Abstract

Radiation therapy is integral to cancer treatments for more than half of patients. Pencil beam scanning (PBS) proton therapy is the latest radiation therapy technology that uses a beam of protons that are magnetically steered and delivered to the tumor. One of the limiting factors of PBS accuracy is the beam cross-sectional size, similar to how a painter is only as accurate as the size of their brush allows. To address this, collimators can be used to shape the beam along the tumor edge to minimize the dose spread outside of the tumor. Under development is a dynamic collimation system (DCS) that uses two pairs of nickel trimmers that collimate the beam at the tumor periphery, limiting dose from spilling into healthy tissue. Herein, we establish the dosimetric and mechanical acceptance criteria for the DCS based on a functioning prototype and Monte Carlo methods, characterize the mechanical accuracy of the prototype, and validate that the acceptance criteria are met. From Monte Carlo simulations, we found that the trimmers must be positioned within ±0.5 mm and ±1.0 deg for the dose distributions to pass our gamma analysis. We characterized the trimmer positioners at jerk values up to 400 m/s3 and validated their accuracy to 50 μm. We measured and validated the rotational trimmer accuracy to ±0.5 deg with a FARO® ScanArm. Lastly, we calculated time penalties associated with the DCS and found that the additional time required to treat one field using the DCS varied from 25–52 s.

References

1.
Lomax
,
A.
,
1999
, “
Intensity Modulation Methods for Proton Radiotherapy
,”
Phys. Med. Biol.
,
44
(
1
), pp.
185
205
.10.1088/0031-9155/44/1/014
2.
Arjomandy
,
B.
,
Sahoo
,
N.
,
Zhu
,
X. R.
,
Zullo
,
J. R.
,
Wu
,
R. Y.
,
Zhu
,
M.
,
Ding
,
X.
,
Martin
,
C.
,
Ciangaru
,
G.
, and
Gillin
,
M. T.
,
2009
, “
An Overview of the Comprehensive Proton Therapy Machine Quality Assurance Procedures Implemented at the University of Texas M. D. Anderson Cancer Center Proton Therapy Center-Houston
,”
Med. Phys.
,
36
(
6Part1
), pp.
2269
2282
.10.1118/1.3120288
3.
Farr
,
J. B.
,
Mascia
,
A. E.
,
Hsi
,
W. C.
,
Allgower
,
C. E.
,
Jesseph
,
F.
,
Schreuder
,
A. N.
,
Wolanski
,
M.
,
Nichiporov
,
D. F.
, and
Anferov
,
V.
,
2008
, “
Clinical Characterization of a Proton Beam Continuous Uniform Scanning System With Dose Layer Stacking
,”
Med. Phys.
,
35
(
11
), pp.
4945
4954
.10.1118/1.2982248
4.
Brenner
,
D. J.
, and
Hall
,
E. J.
,
2008
, “
Secondary Neutrons in Clinical Proton Radiotherapy: A Charged Issue
,”
Radiother. Oncol.
,
86
(
2
), pp.
165
170
.10.1016/j.radonc.2007.12.003
5.
Durante
,
M.
, and
Loeffler
,
J. S.
,
2010
, “
Charged Particles in Radiation Oncology
,”
Nat. Rev. Clin. Oncol.
,
7
(
1
), pp.
37
43
.10.1038/nrclinonc.2009.183
6.
Safai
,
S.
,
Bortfeld
,
T.
, and
Engelsman
,
M.
,
2008
, “
Comparison Between the Lateral Penumbra of a Collimated Double-Scattered Beam and Uncollimated Scanning Beam in Proton Radiotherapy
,”
Phys. Med. Biol.
,
53
(
6
), pp.
1729
1750
.10.1088/0031-9155/53/6/016
7.
Bues
,
M.
,
Newhauser
,
W. D.
,
Titt
,
U.
, and
Smith
,
A. R.
,
2005
, “
Therapeutic Step and Shoot Proton Beam Spot-Scanning With a Multi-Leaf Collimator: A Monte Carlo Study
,”
Radiat. Prot. Dosimetry
,
115
(
1–4
), pp.
164
169
.10.1093/rpd/nci259
8.
Daartz
,
J.
,
Bangert
,
M.
,
Bussière
,
M. R.
,
Engelsman
,
M.
, and
Kooy
,
H. M.
,
2009
, “
Characterization of a Mini-Multileaf Collimator in a Proton Beamline
,”
Med. Phys.
,
36
(
5
), pp.
1886
1894
.10.1118/1.3116382
9.
Winterhalter
,
C.
,
Lomax
,
A.
,
Oxley
,
D.
,
Weber
,
D. C. C.
, and
Safai
,
S.
,
2018
, “
A Study of Lateral Fall-Off (Penumbra) Optimisation for Pencil Beam Scanning (PBS) Proton Therapy
,”
Phys. Med. Biol.
,
63
(
2
), p.
025022
.10.1088/1361-6560/aaa2ad
10.
Hyer
,
D. E.
,
Hill
,
P. M.
,
Wang
,
D.
,
Smith
,
B. R.
, and
Flynn
,
R. T.
,
2014
, “
A Dynamic Collimation System for Penumbra Reduction in Spot-Scanning Proton Therapy: Proof of Concept
,”
Med. Phys.
,
41
(
9
), p.
091701
.10.1118/1.4837155
11.
Geoghegan
,
T. J.
,
Nelson
,
N. P.
,
Flynn
,
R. T.
,
Hill
,
P. M.
,
Rana
,
S.
, and
Hyer
,
D. E.
,
2020
, “
Design of a Focused Collimator for Proton Therapy Spot Scanning Using Monte Carlo Methods
,”
Med. Phys.
,
47
(
7
), pp.
2725
2734
.10.1002/mp.14139
12.
Moignier
,
A.
,
Gelover
,
E.
,
Wang
,
D.
,
Smith
,
B.
,
Flynn
,
R.
,
Kirk
,
M.
,
Lin
,
L.
,
Solberg
,
T.
,
Lin
,
A.
, and
Hyer
,
D.
,
2016
, “
Improving Head and Neck Cancer Treatments Using Dynamic Collimation in Spot Scanning Proton Therapy
,”
Int. J. Part. Ther.
,
2
(
4
), pp.
544
554
.10.14338/IJPT-15-00026.1
13.
Moignier
,
A.
,
Gelover
,
E.
,
Wang
,
D.
,
Smith
,
B.
,
Flynn
,
R.
,
Kirk
,
M.
,
Lin
,
L.
,
Solberg
,
T.
,
Lin
,
A.
, and
Hyer
,
D.
,
2016
, “
Theoretical Benefits of Dynamic Collimation in Pencil Beam Scanning Proton Therapy for Brain Tumors: Dosimetric and Radiobiological Metrics
,”
Int. J. Radiat. Oncol.
,
95
(
1
), pp.
171
180
.10.1016/j.ijrobp.2015.08.030
14.
Moignier
,
A.
,
Gelover
,
E.
,
Smith
,
B. R.
,
Wang
,
D.
,
Flynn
,
R. T.
,
Kirk
,
M. L.
,
Lin
,
L.
,
Solberg
,
T. D.
,
Lin
,
A.
, and
Hyer
,
D. E.
,
2016
, “
Toward Improved Target Conformity for Two Spot Scanning Proton Therapy Delivery Systems Using Dynamic Collimation
,”
Med. Phys.
,
43
(
3
), pp.
1421
7
.10.1118/1.4942375
15.
Smith
,
B. R.
,
Hyer
,
D. E.
, and
Culberson
,
W. S.
,
2020
, “
An Investigation Into the Robustness of Dynamically Collimated Proton Therapy Treatments
,”
Med. Phys.
,
47
(
8
), pp.
3545
3553
.10.1002/mp.14208
16.
Perl
,
J.
,
Shin
,
J.
,
Schümann
,
J.
,
Faddegon
,
B.
, and
Paganetti
,
H.
,
2012
, “
TOPAS: An Innovative Proton Monte Carlo Platform for Research and Clinical Applications
,”
Med. Phys.
,
39
(
11
), pp.
6818
6837
.10.1118/1.4758060
17.
Gelover
,
E.
,
Wang
,
D.
,
Hill
,
P. M.
,
Flynn
,
R. T.
,
Gao
,
M.
,
Laub
,
S.
,
Pankuch
,
M.
, and
Hyer
,
D. E.
,
2015
, “
A Method for Modeling Laterally Asymmetric Proton Beamlets Resulting From Collimation
,”
Med. Phys.
,
42
(
3
), pp.
1321
1334
.10.1118/1.4907965
18.
Agostinelli
,
S.
,
Allison
,
J.
,
Amako
,
K.
,
Apostolakis
,
J.
,
Araujo
,
H.
,
Arce
,
P.
,
Asai
,
M.
,
2003
, “
Geant4—ASimulation Toolkit
,”
Nucl. Instrum. Methods Phys. Res. A
,
506
(
3
), pp.
250
303
.10.1016/S0168-9002(03)01368-8
19.
Nelson
,
N. P.
,
Culberson
,
W. S.
,
Hyer
,
D. E.
,
Geoghegan
,
T. J.
,
Patwardhan
,
K. A.
,
Smith
,
B. R.
,
Flynn
,
R. T.
,
Yu
,
J.
,
Rana
,
S.
,
Gutiérrez
,
A. N.
, and
Hill
,
P. M.
,
2021
, “
Development and Validation of the Dynamic Collimation Monte Carlo Simulation Package for Pencil Beam Scanning Proton Therapy
,”
Med. Phys.
,
48
(
6
), pp.
3172
3185
.10.1002/mp.14846
20.
Low
,
D. A.
, and
Dempsey
,
J. F.
,
2003
, “
Evaluation of the Gamma Dose Distribution Comparison Method
,”
Med. Phys.
,
30
(
9
), pp.
2455
2464
.10.1118/1.1598711
21.
Smith
,
B. R.
,
Hyer
,
D. E.
,
Flynn
,
R. T.
,
Hill
,
P. M.
, and
Culberson
,
W. S.
,
2019
, “
Trimmer Sequencing Time Minimization During Dynamically Collimated Proton Therapy Using a Colony of Cooperating Agents
,”
Phys. Med. Biol.
,
64
(
20
), p.
205025
.10.1088/1361-6560/ab416d
22.
Geoghegan
,
T. J.
,
Nelson
,
N. P.
,
Patwardhan
,
K.
,
Flynn
,
R. T.
,
Hill
,
P. M.
, and
Hyer
,
D. E.
,
2020
, “
Validation of Mechanical Accuracy and Impact on Dose Sensitivity
,” Scientific Abstracts and Sessions, Med. Phys., 47(6), p. e480.
You do not currently have access to this content.