Abstract

This paper presents the design, analysis, and fabrication of a capacitive-based three-axis force sensor as the building block of a wearable sensing system to directly measure all the components of three-dimensional (3D) ground reaction forces (GRFs) during walking. The proposed sensor is low-cost and easy to fabricate with high accuracy, which promotes its accessibility and usability for gait analysis in clinical and research settings. The sensor is comprised of three parallel capacitors that enable three-axial force measurement while significantly reducing the complexity of fabrication and maintenance associated with three-axis force sensors. Comprehensive experiments were conducted to rigorously quantify different aspects of the sensor's performance. The static and dynamic errors along the three axes were less than 2.28%, which is well within the acceptable range for the intended application. The force sensor could decouple three-axial forces with a cross-sensitivity of less than 2%. The developed sensor also demonstrated desirable repeatability and hysteresis behaviors with almost no drift over long periods of usage.

References

1.
Yoon
,
S. Y.
,
Lee
,
S. C.
,
sil An
,
Y.
, and
Kim
,
Y. W.
,
2020
, “
Neural Correlates and Gait Characteristics for Hypoxic-Ischemic Brain Injury Induced Freezing of Gait
,”
Clin. Neurophysiol.
,
131
(
1
), pp.
46
53
.10.1016/j.clinph.2019.09.027
2.
Ishihara
,
A.
,
Reed
,
S. M.
,
Rajala-Schultz
,
P. J.
,
Robertson
,
J. T.
, and
Bertone
,
A. L.
,
2009
, “
Use of Kinetic Gait Analysis for Detection, Quantification, and Differentiation of Hind Limb Lameness and Spinal Ataxia in Horses
,”
J. Am. Vet. Med. Assoc.
,
234
(
5
), pp.
644
651
.10.2460/javma.234.5.644
3.
Marasovič
,
T.
,
Cecič
,
M.
, and
Zanchi
,
V.
,
2009
, “
Analysis and Interpretation of Ground Reaction Forces in Normal Gait
,”
WSEAS Trans. Syst.
,
8
(
9
), pp.
1105
1114
.http://wseas.us/elibrary/transactions/systems/2009/29-755.pdf
4.
Riley
,
P. O.
,
Dicharry
,
J.
,
Franz
,
J.
,
Croce
,
U. D.
,
Wilder
,
R. P.
, and
Kerrigan
,
D. C.
,
2008
, “
A Kinematics and Kinetic Comparison of Overground and Treadmill Running
,”
Med. Sci. Sports Exer.
,
40
(
6
), pp.
1093
1100
.10.1249/MSS.0b013e3181677530
5.
Kram
,
R.
,
Griffin
,
T. M.
,
Donelan
,
J. M.
,
Chang
,
Y. H. U. I.
,
Griffin
,
T. M.
, and
Maxwell
,
J.
,
1998
, “
Force Treadmill for Measuring Vertical and Horizontal Ground Reaction Forces
,”
J. Appl. Physiol.
85
(
2
): pp.
764
769
.10.1152/jappl.1998.85.2.764
6.
Dierick
,
F.
,
Penta
,
M.
,
Renaut
,
D.
, and
Detrembleur
,
C.
,
2004
, “
A Force Measuring Treadmill in Clinical Gait Analysis
,”
Gait Posture
,
20
(
3
), pp.
299
303
.10.1016/j.gaitpost.2003.11.001
7.
Chen
,
C. J.
, and
Chou
,
L. S.
,
2010
, “
Center of Mass Position Relative to the Ankle During Walking: A Clinically Feasible Detection Method for Gait Imbalance
,”
Gait Posture
,
31
(
3
), pp.
391
393
.10.1016/j.gaitpost.2009.11.010
8.
Orishimo
,
K. F.
,
Kremenic
,
I. J.
,
Deshmukh
,
A. J.
,
Nicholas
,
S. J.
, and
Rodriguez
,
J. A.
,
2012
, “
Does Total Knee Arthroplasty Change Frontal Plane Knee Biomechanics During Gait?
Clin. Orthop. Relat. Res.
,
470
(
4
), pp.
1171
1176
.10.1007/s11999-011-2196-0
9.
Howell
,
A. M.
,
Kobayashi
,
T.
,
Hayes
,
H. A.
,
Foreman
,
K. B.
, and
Bamberg
,
S. J.
,
2013
, “
Kinetic Gait Analysis Using a Low-Cost Insole
,”
IEEE Trans. Biomed. Eng.
,
60
(
12
), pp.
3284
3290
.10.1109/TBME.2013.2250972
10.
Rosquist
,
P. G.
,
Collins
,
G.
,
Merrell
,
A. J.
,
Tuttle
,
N. J.
,
Tracy
,
J. B.
,
Bird
,
E. T.
,
Seeley
,
M. K.
,
Fullwood
,
D. T.
,
Christensen
,
W. F.
, and
Bowden
,
A. E.
,
2017
, “
Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking
,”
Ann. Biomed. Eng.
,
45
(
9
), pp.
2122
2134
.10.1007/s10439-017-1852-2
11.
Rouhani
,
H.
,
Favre
,
J.
,
Crevoisier
,
X.
, and
Aminian
,
K.
,
2014
, “
A Wearable System for Multi-Segment Foot Kinetics Measurement
,”
ASME J. Biomech.
,
47
(
7
), pp.
1704
1711
.10.1016/j.jbiomech.2014.02.027
12.
Mohamed Refai
,
M. I.
,
van Beijnum
,
B. J. F.
,
Buurke
,
J. H.
, and
Veltink
,
P. H.
,
2020
, “
Portable Gait Lab: Estimating Over-Ground 3D Ground Reaction Forces Using Only a Pelvis IMU
,”
Sensors (Basel, Switzerland)
,
20
(
21)
, p.
6363
.10.3390/s20216363
13.
Min
,
S.
, and
Kim
,
J.
,
2015
, “
Inertial Sensor Based Inverse Dynamics Analysis of Human Motions
,” 2015 IEEE International Conference on Advanced Intelligent Mechatronics (
AIM
), Busan, Korea, July 7–11, pp.
177
182
.10.1109/AIM.2015.7222528
14.
Chandel
,
V.
,
Singhal
,
S.
,
Sharma
,
V.
,
Ahmed
,
N.
, and
Ghose
,
A.
,
2019
, “
PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU
,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Berlin, Germany, July 23–27, pp.
3290
3296
.10.1109/EMBC.2019.8857877
15.
Leporace
,
G.
,
Batista
,
L. A.
,
Metsavaht
,
L.
, and
Nadal
,
J.
,
2015
, “
Residual Analysis of Ground Reaction Forces Simulation During Gait Using Neural Networks With Different Configurations
,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Milan, Italy, Aug. 25–29, pp.
2812
2815
.10.1109/EMBC.2015.7318976
16.
Johnson
,
W. R.
,
Mian
,
A.
,
Robinson
,
M. A.
,
Verheul
,
J.
,
Lloyd
,
D. G.
, and
Alderson
,
J. A.
,
2019
, “
Multidimensional Ground Reaction Forces and Moments From Wearable Sensor Accelerations Via Deep Learning
,”
IEEE Trans. Biomed. Eng.
, 68(
1
), pp.
289
297
.10.1109/TBME.2020.3006158
17.
Hendry
,
D.
,
Leadbetter
,
R.
,
McKee
,
K.
,
Hopper
,
L.
,
Wild
,
C.
,
O'sullivan
,
P.
,
Straker
,
L.
, and
Campbell
,
A.
,
2020
, “
An Exploration of Machine-Learning Estimation of Ground Reaction force From Wearable Sensor Data
,”
Sensors (Switzerland)
,
20
(
3
,
740
).10.3390/s20030740
18.
Tan
,
T.
,
Chiasson
,
D. P.
,
Hu
,
H.
, and
Shull
,
P. B.
,
2019
, “
Influence of IMU Position and Orientation Placement Errors on Ground Reaction Force Estimation
,”
J. Biomech.
,
97
, p.
109416
.10.1016/j.jbiomech.2019.109416
19.
Al-Mai
,
O.
,
Ahmadi
,
M.
, and
Albert
,
J.
,
2017
, “
A Compliant 3-Axis Fiber-Optic Force Sensor for Biomechanical Measurement
,”
IEEE Sens. J.
,
17
(
20
), pp.
6549
6557
.10.1109/JSEN.2017.2750157
20.
Kim
,
S. J.
,
Gu
,
G. M.
,
Na
,
Y.
,
Park
,
J.
,
Kim
,
Y.
, and
Kim
,
J.
,
2020
, “
Wireless Ground Reaction Force Sensing System Using a Mechanically Decoupled Two-Dimensional Force Sensor
,”
IEEE/ASME Trans. Mechatronics
,
25
(
1
), pp.
66
75
.10.1109/TMECH.2019.2948650
21.
Liu
,
S. A.
, and
Tzo
,
H. L.
,
2002
, “
A Novel Six-Component Force Sensor of Good Measurement Isotropy and Sensitivities
,”
Sens. Actuators, A
, 100(2–3), pp.
223
230
.10.1016/S0924-4247(02)00135-8
22.
Mastinu
,
G.
,
Gobbi
,
M.
, and
Previati
,
G.
,
2011
, “
A New Six-Axis Load Cell. Part I: Design
,”
Exp. Mech.
,
51
(
3
), pp.
373
388
.10.1007/s11340-010-9355-1
23.
Joo
,
J.
,
Na
,
K.
, and
Kang
,
D.
,
2002
, “
Design and Evaluation of a Six-Component Load Cell
,”
Measurement
,
32
(
2
), pp.
125
133
.10.1016/S0263-2241(02)00002-7
24.
Kim
,
G.-S.
,
2007
, “
Design of a Six-Axis Wrist Force/Moment Sensor Using FEM and Its Fabrication for An Intelligent Robot
,”
Sens. Actuators A
,
133
(
1
), pp.
27
34
.10.1016/j.sna.2006.03.038
25.
Sanders
,
J. E.
,
Miller
,
R. A.
,
Berglund
,
D.
, and
Zachariah
,
S. G.
,
1997
, “
A Modular Six-Directional Force Sensor for Prosthetic Assessment: A Technical Note
,”
J. Rehabil. Res. Dev.
,
34
(
2)
, pp.
195
202
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.7344&rep=rep1&type=pdf
26.
Liang
,
Q.
,
Zhang
,
D.
,
Wang
,
Y.
,
Coppola
,
G.
, and
Ge
,
Y.
,
2013
, “
PM Based Multi-Component f/t Sensors—State of the Art and Trends
,”
Rob. Comput.-Integr. Manuf.
,
29
(
4
), pp.
1
7
.10.1016/j.rcim.2012.12.002
27.
Viry
,
L.
,
Levi
,
A.
,
Totaro
,
M.
,
Mondini
,
A.
,
Mattoli
,
V.
,
Mazzolai
,
B.
, and
Beccai
,
L.
,
2014
, “
Flexible Three-Axial Force Sensor for Soft and Highly Sensitive Artificial Touch
,”
Adv. Mater.
,
26
(
17
), pp.
2659
2664
.10.1002/adma.201305064
28.
Peng
,
P.
, and
Rajamani
,
R.
,
2012
, “
Flexible Microtactile Sensor for Normal and Shear Elasticity Measurements
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4907
4913
.10.1109/TIE.2011.2172175
29.
Kim
,
D.
,
Lee
,
C. H.
,
Kim
,
B. C.
,
Lee
,
D. H.
,
Lee
,
H. S.
,
Nguyen
,
C. T.
,
Kim
,
U. K.
,
Nguyen
,
T. D.
,
Moon
,
H.
,
Koo
,
J. C.
,
do Nam
,
J.
, and
Choi
,
H. R.
,
2013
, “
Six-Axis Capacitive Force/Torque Sensor Based on Dielectric Elastomer
,” Electroactive Polymer Actuators and Devices
(EAPAD)
, Vol. 8687, p. 86872J.10.1117/12.2009970
30.
Lee
,
D.-H.
,
Kim
,
U.
,
Jung
,
H.
, and
Choi
,
H. R.
,
2016
, “
A Capacitive-Type Novel Six-Axis Force/Torque Sensor for Robotic Applications
,”
IEEE Sens. J.
,
16
(
8
), pp.
2290
2299
.10.1109/JSEN.2015.2504267
31.
Choi
,
H.-R.
,
Lee
,
D.-H.
,
Kim
,
U.
,
Gulrez
,
T.
,
Yoon
,
W. J.
, and
Hannaford
,
B.
,
2015
, “
A Laparoscopic Grasping Tool With Force Sensing Capability
,”
IEEE/ASME Trans. Mechatronics
, 21(1), pp.
1
1
.10.1109/TMECH.2015.2442591
32.
Kim
,
U.
,
Kim
,
Y. B.
,
Seok
,
D.-Y.
,
So
,
J.
, and
Choi
,
H. R.
,
2016
, “
Development of Surgical Forceps Integrated With a Multi-Axial Force Sensor for Minimally Invasive Robotic Surgery
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
IEEE
, Daejeon, South Korea, Oct. 9–14.10.1109/IROS.2016.7759543
33.
Kim
,
U.
,
Kim
,
Y. B.
,
So
,
J.
,
Seok
,
D.-Y.
, and
Choi
,
H. R.
,
2018
, “
Sensorized Surgical Forceps for Robotic-Assisted Minimally Invasive Surgery
,”
IEEE Trans. Ind. Electron.
,
65
(
12
), pp.
9604
9613
.10.1109/TIE.2018.2821626
34.
Sieber
,
A.
,
Valdastri
,
P.
,
Houston
,
K.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2008
, “
Flip Chip Microassembly of a Silicon Triaxial Force Sensor On Flexible Substrates
,”
Sens. Actuators A
,
142
(
1
), pp.
421
428
.10.1016/j.sna.2007.02.042
35.
Valdastri
,
P.
,
Roccella
,
S.
,
Beccai
,
L.
,
Cattin
,
E.
,
Menciassi
,
A.
,
Carrozza
,
M.
, and
Dario
,
P.
,
2005
, “
Characterization of a Novel Hybrid Silicon Three-Axial Force Sensor
,”
Sens. Actuators A Phys.
,
123–124
, pp.
249
257
.10.1016/j.sna.2005.01.006
36.
Puangmali
,
P.
,
Liu
,
H.
,
Seneviratne
,
L. D.
,
Dasgupta
,
P.
, and
Althoefer
,
K.
,
2012
, “
Miniature 3-Axis Distal Force Sensor for Minimally Invasive Surgical Palpation
,”
IEEE/ASME Trans. Mechatronics
,
17
(
4
), pp.
646
656
.10.1109/TMECH.2011.2116033
37.
Peirs
,
J.
,
Clijnen
,
J.
,
Reynaerts
,
D.
,
Brussel
,
H. V.
,
Herijgers
,
P.
,
Corteville
,
B.
, and
Boone
,
S.
,
2004
, “
A Micro Optical Force Sensor for Force Feedback During Minimally Invasive Robotic Surgery
,”
Sens. Actuators A
,
115
(
2–3
), pp.
447
455
.10.1016/j.sna.2004.04.057
38.
Cherry
,
A.
,
Abadie
,
J.
, and
Piat
,
E.
,
2007
, “
Modelling and Optimization of a Floating Triangular Platform Used for Nano and Microforces Sensing
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, San Diego, CA, Oct. 29–Nov. 2.10.1109/IROS.2007.4399246
39.
Su
,
H.
,
Yang
,
C.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2019
, “
Improved Human-Robot Collaborative Control of Redundant Robot for Teleoperated Minimally Invasive Surgery
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1447
1453
.10.1109/LRA.2019.2897145
40.
Su
,
H.
,
Qi
,
W.
,
Yang
,
C.
,
Sandoval
,
J.
,
Ferrigno
,
G.
, and
Momi
,
E. D.
,
2020
, “
Deep Neural Network Approach in Robot Tool Dynamics Identification for Bilateral Teleoperation
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2943
2949
.10.1109/LRA.2020.2974445
41.
Li
,
L.
,
Han
,
J.
,
Li
,
X.
,
Guo
,
B.
,
Xia
,
P.
, and
Du
,
G.
,
2021
, “
A New Structure of End-Effector Traction Upper Limb Rehabilitation Robot
,” IEEE International Conference on Real-time Computing and Robotics (
RCAR
), Xining, China, July 15–19, pp.
650
655
.10.1109/RCAR52367.2021.9517573
42.
Brahmi
,
B.
,
Saad
,
M.
,
Rahman
,
M. H.
, and
Brahmi
,
A.
,
2020
, “
Adaptive Force and Position Control Based on Quasi-Time Delay Estimation of Exoskeleton Robot for Rehabilitation
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
2152
2163
.10.1109/TCST.2019.2931522
43.
Su
,
H.
,
Qi
,
W.
,
Li
,
Z.
,
Chen
,
Z.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2021
, “
Deep Neural Network Approach in EMG-Based Force Estimation for Human-Robot Interaction
,”
IEEE Trans. Artif. Intell.
,
2
(
5)
, pp.
404
,
412
.10.1109/TAI.2021.3066565
44.
Jacobs
,
D. A.
, and
Ferris
,
D. P.
,
2015
, “
Estimation of Ground Reaction Forces and Ankle Moment With Multiple, Low-Cost Sensors
,”
J. Neuroeng. Rehabil.
,
12
(
1
), p.
90
.10.1186/s12984-015-0081-x
45.
Kim
,
U.
,
Lee
,
D.-H.
,
Kim
,
Y. B.
,
Seok
,
D.-Y.
, and
Choi
,
H. R.
,
2017
, “
A Novel Six-Axis Force/Torque Sensor for Robotic Applications
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1381
1391
.10.1109/TMECH.2016.2640194
46.
Kang
,
M. K.
,
Lee
,
S.
, and
Kim
,
J. H.
,
2014
, “
Shape Optimization of a Mechanically Decoupled Six-Axis Force/Torque Sensor
,”
Sens. Actuators A
,
209
, pp.
41
51
.10.1016/j.sna.2014.01.001
47.
Oh
,
H. S.
,
Kim
,
U.
,
Kang
,
G.
,
Seo
,
J. K.
, and
Choi
,
H. R.
,
2018
, “
Multi-Axial Force/Torque Sensor Calibration Method Based on Deep-Learning
,”
IEEE Sens. J.
,
18
(
13
), pp.
5485
5496
.10.1109/JSEN.2018.2834727
48.
Alizadeh Noghani
,
M.
,
Browning
,
D.
,
Caccese
,
V.
,
DePoy
,
E.
,
Gilson
,
S.
,
Beaumont
,
R.
, and
Hejrati
,
B.
,
2021
, “
Design and Evaluation of the Afari: A Three-Wheeled Mobility and Balance Support Device for Outdoor Exercise
,”
Assis. Technol.
, epub, pp.
1
10
.10.1080/10400435.2021.1976885
You do not currently have access to this content.