Abstract

Transcatheter aortic valve replacement devices vary in leaflet material and in the height for which leaflets attach to the stented valve frame. Combinations of these features can influence leaflet dynamics, neo-sinus geometries, and fluid dynamics, thereby reducing or exacerbating the potential for blood flow stasis and leaflet thrombosis. To investigate these interconnected relationships, this study evaluated the effects of transcatheter valve leaflet type [porcine versus bovine pericardium] and the leaflet-stent attachment height (low, mid, and high) on flow stasis and potential for leaflet thrombosis. Transcatheter valve models were manufactured and tested within an aortic simulator under pulsatile left heart hemodynamic conditions. Transvalvular hemodynamics, leaflet kinematics, and flow structures were evaluated by direct measurement, high-speed imaging, and two differing techniques of particle image velocimetry. Transcatheter valves with porcine pericardial leaflets were observed to be less stiff, exhibit a lesser resistance to flow, were associated with reduced regions of neo-sinus flow stasis, and superior sinus washout times. More elevated attachments of the leaflets were associated with less neo-sinus flow stasis. These initial results and observations suggest combinations of leaflet type and stent attachment height may reduce transcatheter aortic valve flow stasis and the potential for leaflet thrombosis.

References

1.
Nkomo
,
V. T.
,
Gardin
,
J. M.
,
Skelton
,
T. N.
,
Gottdiener
,
J. S.
,
Scott
,
C. G.
, and
Enriquez-Sarano
,
M.
,
2006
, “
Burden of Valvular Heart Diseases: A Population-Based Study
,”
Lancet
,
368
(
9540
), pp.
1005
1011
.10.1016/S0140-6736(06)69208-8
2.
Carabello
,
B. A.
,
2008
, “
Aortic Stenosis: A Fatal Disease With but a Single Cure
,”
JACC Cardiovasc. Interv.
,
1
(
2
), pp.
127
128
.10.1016/j.jcin.2007.12.004
3.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Brown
,
D. L.
,
Block
,
P. C.
,
Guyton
,
R. A.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Douglas
,
P. S.
,
Petersen
,
J. L.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
,
Pocock
,
S.
, and
Investigators
,
P. T.
,
2010
, “
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
N. Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.10.1056/NEJMoa1008232
4.
Carabello
,
B. A.
,
2011
, “
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
Curr. Cardiol. Rep.
,
13
(
3
), pp.
173
174
.10.1007/s11886-011-0173-6
5.
Blanke
,
P.
,
Leipsic
,
J. A.
,
Popma
,
J. J.
,
Yakubov
,
S. J.
,
Deeb
,
G. M.
,
Gada
,
H.
,
Mumtaz
,
M.
,
Ramlawi
,
B.
,
Kleiman
,
N. S.
,
Sorajja
,
P.
,
Askew
,
J.
,
Meduri
,
C. U.
,
Kauten
,
J.
,
Melnitchouk
,
S.
,
Inglessis
,
I.
,
Huang
,
J.
,
Boulware
,
M.
,
Reardon
,
M. J.
, and
Evolut Low Risk
,
L. T. I. S. I.
,
2020
, “
Bioprosthetic Aortic Valve Leaflet Thickening in the Evolut Low Risk Sub-Study
,”
J. Am. Coll. Cardiol.
,
75
(
19
), pp.
2430
2442
.10.1016/j.jacc.2020.03.022
6.
Makkar
,
R. R.
,
Fontana
,
G.
,
Jilaihawi
,
H.
,
Chakravarty
,
T.
,
Kofoed
,
K. F.
,
De Backer
,
O.
,
Asch
,
F. M.
,
Ruiz
,
C. E.
,
Olsen
,
N. T.
,
Trento
,
A.
,
Friedman
,
J.
,
Berman
,
D.
,
Cheng
,
W.
,
Kashif
,
M.
,
Jelnin
,
V.
,
Kliger
,
C. A.
,
Guo
,
H.
,
Pichard
,
A. D.
,
Weissman
,
N. J.
,
Kapadia
,
S.
,
Manasse
,
E.
,
Bhatt
,
D. L.
,
Leon
,
M. B.
, and
Søndergaard
,
L.
,
2015
, “
Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves
,”
N. Engl. J. Med.
,
373
(
21
), pp.
2015
2024
.10.1056/NEJMoa1509233
7.
Pache
,
G.
,
Schoechlin
,
S.
,
Blanke
,
P.
,
Dorfs
,
S.
,
Jander
,
N.
,
Arepalli
,
C. D.
,
Gick
,
M.
,
Buettner
,
H. J.
,
Leipsic
,
J.
,
Langer
,
M.
,
Neumann
,
F. J.
, and
Ruile
,
P.
,
2016
, “
Early Hypo-Attenuated Leaflet Thickening in Balloon-Expandable Transcatheter Aortic Heart Valves
,”
Eur. Heart J.
,
37
(
28
), pp.
2263
2271
.10.1093/eurheartj/ehv526
8.
Hansson
,
N. C.
,
Grove
,
E. L.
,
Andersen
,
H. R.
,
Leipsic
,
J.
,
Mathiassen
,
O. N.
,
Jensen
,
J. M.
,
Jensen
,
K. T.
,
Blanke
,
P.
,
Leetmaa
,
T.
,
Tang
,
M.
,
Krusell
,
L. R.
,
Klaaborg
,
K. E.
,
Christiansen
,
E. H.
,
Terp
,
K.
,
Terkelsen
,
C. J.
,
Poulsen
,
S. H.
,
Webb
,
J.
,
Botker
,
H. E.
, and
Norgaard
,
B. L.
,
2016
, “
Transcatheter Aortic Valve Thrombosis: Incidence, Predisposing Factors, and Clinical Implications
,”
J. Am. Coll. Cardiol.
,
68
(
19
), pp.
2059
2069
.10.1016/j.jacc.2016.08.010
9.
De Marchena
,
E.
,
Mesa
,
J.
,
Pomenti
,
S.
,
Marin y Kall
,
C.
,
Marincic
,
X.
,
Yahagi
,
K.
,
Ladich
,
E.
,
Kutys
,
R.
,
Aga
,
Y.
,
Ragosta
,
M.
,
Chawla
,
A.
,
Ring
,
M. E.
, and
Virmani
,
R.
,
2015
, “
Thrombus Formation Following Transcatheter Aortic Valve Replacement
,”
JACC Cardiovasc. Interv.
,
8
(
5
), pp.
728
739
.10.1016/j.jcin.2015.03.005
10.
Kanjanauthai
,
S.
,
Pirelli
,
L.
,
Nalluri
,
N.
, and
Kliger
,
C. A.
,
2018
, “
Subclinical Leaflet Thrombosis Following Transcatheter Aortic Valve Replacement
,”
J. Interv. Cardiol.
,
31
(
5
), pp.
640
647
.10.1111/joic.12521
11.
Chakravarty
,
T.
,
Søndergaard
,
L.
,
Friedman
,
J.
,
De Backer
,
O.
,
Berman
,
D.
,
Kofoed
,
K. F.
,
Jilaihawi
,
H.
,
Shiota
,
T.
,
Abramowitz
,
Y.
,
Jørgensen
,
T. H.
,
Rami
,
T.
,
Israr
,
S.
,
Fontana
,
G.
,
de Knegt
,
M.
,
Fuchs
,
A.
,
Lyden
,
P.
,
Trento
,
A.
,
Bhatt
,
D. L.
,
Leon
,
M. B.
,
Makkar
,
R. R.
,
Ramzy
,
D.
,
Cheng
,
W.
,
Siegel
,
R. J.
,
Thomson
,
L. M.
,
Mangat
,
G.
,
Hariri
,
B.
,
Sawaya
,
F. J.
, and
Iversen
,
H. K.
, and
Investigators, S.
,
2017
, “
Subclinical Leaflet Thrombosis in Surgical and Transcatheter Bioprosthetic Aortic Valves: An Observational Study
,”
Lancet
,
389
(
10087
), pp.
2383
2392
.10.1016/S0140-6736(17)30757-2
12.
Rashid
,
H. N.
,
Nasis
,
A.
,
Gooley
,
R. P.
,
Cameron
,
J. D.
, and
Brown
,
A. J.
,
2018
, “
The Prevalence of Computed Tomography-Defined Leaflet Thrombosis in Intra- Versus Supra-Annular Transcatheter Aortic Valve Prostheses
,”
Catheter Cardiovasc. Interv.
,
92
(
7
), pp.
1414
1416
.10.1002/ccd.27702
13.
Midha
,
P. A.
,
Raghav
,
V.
,
Sharma
,
R.
,
Condado
,
J. F.
,
Okafor
,
I. U.
,
Rami
,
T.
,
Kumar
,
G.
,
Thourani
,
V. H.
,
Jilaihawi
,
H.
,
Babaliaros
,
V.
,
Makkar
,
R. R.
, and
Yoganathan
,
A. P.
,
2017
, “
The Fluid Mechanics of Transcatheter Heart Valve Leaflet Thrombosis in the Neosinus
,”
Circulation
,
136
(
17
), pp.
1598
1609
.10.1161/CIRCULATIONAHA.117.029479
14.
Vahidkhah
,
K.
,
Barakat
,
M.
,
Abbasi
,
M.
,
Javani
,
S.
,
Azadani
,
P. N.
,
Tandar
,
A.
,
Dvir
,
D.
, and
Azadani
,
A. N.
,
2017
, “
Valve Thrombosis Following Transcatheter Aortic Valve Replacement: Significance of Blood Stasis on the Leaflets
,”
Eur. J. Cardiothorac. Surg.
,
51
(
5
), pp.
ezw407
–ezw
935
.10.1093/ejcts/ezw407
15.
Kapadia
,
S.
,
Tuzcu
,
E. M.
, and
Svensson
,
L. G.
,
2017
, “
Anatomy and Flow Characteristics of Neosinus: Important Consideration for Thrombosis of Transcatheter Aortic Valves
,”
Circulation
,
136
(
17
), pp.
1610
1612
.10.1161/CIRCULATIONAHA.117.030465
16.
Hatoum
,
H.
,
Dollery
,
J.
,
Lilly
,
S. M.
,
Crestanello
,
J.
, and
Dasi
,
L. P.
,
2019
, “
Impact of Patient-Specific Morphologies on Sinus Flow Stasis in Transcatheter Aortic Valve Replacement: An In Vitro Study
,”
J. Thorac. Cardiovasc. Surg.
,
157
(
2
), pp.
540
549
.10.1016/j.jtcvs.2018.05.086
17.
Madukauwa-David
,
I. D.
,
Sadri
,
V.
,
Kamioka
,
N.
,
Midha
,
P. A.
,
Raghav
,
V.
,
Oshinski
,
J. N.
,
Sharma
,
R.
,
Babaliaros
,
V.
, and
Yoganathan
,
A. P.
,
2020
, “
Transcatheter Aortic Valve Deployment Influences Neo-Sinus Thrombosis Risk: An In Vitro Flow Study
,”
Catheter Cardiovasc. Interv.
,
95
(
5
), pp.
1009
1016
.10.1002/ccd.28388
18.
Midha
,
P. A.
,
Raghav
,
V.
,
Okafor
,
I.
, and
Yoganathan
,
A. P.
,
2017
, “
The Effect of Valve-in-Valve Implantation Height on Sinus Flow
,”
Ann. Biomed. Eng.
,
45
(
2
), pp.
405
412
.10.1007/s10439-016-1642-2
19.
Singh-Gryzbon
,
S.
,
Ncho
,
B.
,
Sadri
,
V.
,
Bhat
,
S. S.
,
Kollapaneni
,
S. S.
,
Balakumar
,
D.
,
Wei
,
Z. A.
,
Ruile
,
P.
,
Neumann
,
F. J.
,
Blanke
,
P.
, and
Yoganathan
,
A. P.
,
2020
, “
Influence of Patient-Specific Characteristics on Transcatheter Heart Valve Neo-Sinus Flow: An in Silico Study
,”
Ann. Biomed. Eng.
,
48
(
10
), pp.
2400
2411
.10.1007/s10439-020-02532-x
20.
LifeSciences
,
E.
,
2021
, “
Edwards SAPIEN 3 Transcatheter Heart Valve System Instructions for Use
,” Edwards Lifesciences LLC, Irvine, CA, accessed Nov. 15, 2021. https://www.accessdata.fda.gov/cdrh_docs/pdf14/P140031S085d.pdf
21.
Medtronic, 2021,
Medtronic CoreValve System Instructions for Use
,” Medtronic CoreValve LLC, Santa Ana, CA, accessed Nov. 15, 2021. https://www.accessdata.fda.gov/cdrh_docs/pdf13/p130021c.pdf
22.
Trusty
,
P. M.
,
Sadri
,
V.
,
Madukauwa-David
,
I. D.
,
Funnell
,
E.
,
Kamioka
,
N.
,
Sharma
,
R.
,
Makkar
,
R.
,
Babaliaros
,
V.
, and
Yoganathan
,
A. P.
,
2019
, “
Neosinus Flow Stasis Correlates With Thrombus Volume Post-TAVR: A Patient-Specific In Vitro Study
,”
JACC Cardiovasc. Interv.
,
12
(
13
), pp.
1288
1290
.10.1016/j.jcin.2019.03.022
23.
Ncho
,
B.
,
Sadri
,
V.
,
Ortner
,
J.
,
Kollapaneni
,
S.
, and
Yoganathan
,
A.
,
2021
, “
In-Vitro Assessment of the Effects of Transcatheter Aortic Valve Leaflet Design on Neo-Sinus Geometry and Flow
,”
Ann. Biomed. Eng.
,
49
(
3
), pp.
1046
1057
.10.1007/s10439-020-02664-0
24.
Reul
,
H.
,
Vahlbruch
,
A.
,
Giersiepen
,
M.
,
Schmitz-Rode
,
T.
,
Hirtz
,
V.
, and
Effert
,
S.
,
1990
, “
The Geometry of the Aortic Root in Health, at Valve Disease and After Valve Replacement
,”
J. Biomech.
,
23
(
2
), pp.
181
191
.10.1016/0021-9290(90)90351-3
25.
Organisation
,
I. S.
,
2013
, “
Cardiovascular Implants - Cardiac Valve Prostheses. Part 3: Heart Valve Substitutes Implanted by Transcatheter Techniques
,” U.S. Food and Drug Administration, Silver Spring, MD, accessed Nov. 15, 2021, https://www.iso.org/obp/ui/#iso:std:iso:5840:-3:ed-1:v1:en
26.
Madukauwa-David
,
I. D.
,
Sadri
,
V.
,
Midha
,
P. A.
,
Babaliaros
,
V.
,
Aidun
,
C.
, and
Yoganathan
,
A. P.
,
2020
, “
An Evaluation of the Influence of Coronary Flow on Transcatheter Heart Valve Neo-Sinus Flow Stasis
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
169
180
.10.1007/s10439-019-02324-y
27.
Saikrishnan
,
N.
,
Gupta
,
S.
, and
Yoganathan
,
A. P.
,
2013
, “
Hemodynamics of the Boston Scientific Lotus Valve: An In Vitro Study
,”
Cardiovasc. Eng. Technol.
,
4
(
4
), pp.
427
439
.10.1007/s13239-013-0163-5
28.
Gunning
,
P. S.
,
Saikrishnan
,
N.
,
McNamara
,
L. M.
, and
Yoganathan
,
A. P.
,
2014
, “
An In Vitro Evaluation of the Impact of Eccentric Deployment on Transcatheter Aortic Valve Hemodynamics
,”
Ann. Biomed. Eng.
,
42
(
6
), pp.
1195
1206
.10.1007/s10439-014-1008-6
29.
Raghav
,
V.
,
Sastry
,
S.
, and
Saikrishnan
,
N.
,
2018
, “
Experimental Assessment of Flow Fields Associated With Heart Valve Prostheses Using Particle Image Velocimetry (PIV): Recommendations for Best Practices
,”
Cardiovasc. Eng. Technol.
,
9
(
3
), pp.
273
287
.10.1007/s13239-018-0348-z
30.
Hatoum
,
H.
,
Yousefi
,
A.
,
Lilly
,
S.
,
Maureira
,
P.
,
Crestanello
,
J.
, and
Dasi
,
L. P.
,
2018
, “
An In Vitro Evaluation of Turbulence After Transcatheter Aortic Valve Implantation
,”
J. Thorac. Cardiovasc. Surg.
,
156
(
5
), pp.
1837
1848
.10.1016/j.jtcvs.2018.05.042
31.
Murdock
,
K.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
Characterization of Mechanical Properties of Pericardium Tissue Using Planar Biaxial Tension and Flexural Deformation
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
148
156
.10.1016/j.jmbbm.2017.08.039
32.
Toninato
,
R.
,
Salmon
,
J.
,
Susin
,
F. M.
,
Ducci
,
A.
, and
Burriesci
,
G.
,
2016
, “
Physiological Vortices in the Sinuses of Valsalva: An In Vitro Approach for Bio-Prosthetic Valves
,”
J. Biomech.
,
49
(
13
), pp.
2635
2643
.10.1016/j.jbiomech.2016.05.027
33.
Johnson
,
E. L.
,
Wu
,
M. C. H.
,
Xu
,
F.
,
Wiese
,
N. M.
,
Rajanna
,
M. R.
,
Herrema
,
A. J.
,
Ganapathysubramanian
,
B.
,
Hughes
,
T. J. R.
,
Sacks
,
M. S.
, and
Hsu
,
M. C.
,
2020
, “
Thinner Biological Tissues Induce Leaflet Flutter in Aortic Heart Valve Replacements
,”
Proc. Natl. Acad. Sci. USA
,
117
(
32
), pp.
19007
19016
.10.1073/pnas.2002821117
You do not currently have access to this content.