Abstract

Portable oxygen concentrators (POCs) are widely used to administer long-term oxygen therapy (LTOT) and employ pulsed delivery modes to conserve oxygen. Efficient pulsed delivery requires that POCs are triggered by patient inhalation. Triggering is known to fail for some patients during periods of quiet breathing, as occurs during sleep. This article describes a new nasal interface designed to improve triggering of pulsed oxygen delivery from POCs. In vitro experiments incorporating realistic nasal airway replicas and simulated breathing were conducted. The pressure monitored via oxygen supply tubing (the signal pressure) was measured over a range of constant inhalation flow rates with the nasal interface inserted into the nares of the nasal airway replicas, and then compared with signal pressures measured for standard and flared nasal cannulas. The triggering efficiency and fraction of inhaled oxygen (FiO2) were next evaluated for the nasal interface and cannulas used with a commercial POC during simulated tidal breathing through the replicas. Higher signal pressures were achieved for the nasal interface than for nasal cannulas at all flow rates studied. The nasal interface triggered pulsed delivery from the POC in cases where nasal cannulas had failed to do so. FiO2 was significantly higher for successful triggering cases than for failed triggering cases. The nasal interface improved triggering of pulsed oxygen delivery from a POC and presents a simple solution that could be used with commercially available POCs to reliably supply oxygen during periods of quiet breathing.

References

1.
Medical Research Council Working Party
,
1981
, “
Long Term Domiciliary Oxygen Therapy in Chronic Hypoxic Cor Pulmonale Complicating Chronic Bronchitis and Emphysema
,”
Lancet
,
1
, pp.
681
686
.10.1136/thx.31.4.414
2.
Nocturnal Oxygen Therapy Trial Group
,
1980
, “
Continuous or Nocturnal Oxygen Therapy in Hypoxemic Chronic Obstructive Lung Disease: A Clinical Trial
,”
Ann. Intern. Med.
,
93
, pp.
391
398
.10.7326/0003-4819-93-3-391
3.
McCoy
,
R.
,
2000
, “
Oxygen-Conserving Techniques and Devices
,”
Resp. Care
,
45
, pp.
95
103
.https://pubmed.ncbi.nlm.nih.gov/10771785/
4.
Yanez
,
A. M.
,
Prat
,
J. P.
,
Alvarez-Sala
,
J. L.
,
Calle
,
M.
,
Lobato
,
S. D.
,
Gonzalez
,
J. L. G.
,
Gonzalez-Moro
,
J. M. R.
,
Galera-Martinez
,
R.
,
Villasante
,
C.
,
Ramos
,
I.
,
Franco-Gay
,
M.
, and
Lucas
,
P. D.
,
2015
, “
Oxygenation With a Single Portable Puse-Dose Oxygen-Conserving Device and Combined Stationary and Portable Oxygen Delivery Devices in Subjects With COPD
,”
Resp. Care
,
60
, pp.
382
387
.10.4187/respcare.03470
5.
Dakkak
,
J.
,
Tang
,
W.
,
Smith
,
J. T.
,
Balasubramanian
,
A.
,
Mattson
,
M.
,
Ainechi
,
A.
,
Dudley
,
B.
,
Hill
,
M.
,
Mathai
,
S. C.
,
McCormack
,
M. C.
,
Acharya
,
S.
, and
Danoff
,
S. K.
,
2021
, “
Burden and Unmet Needs With Portable Oxygen in Patients on Long-Term Oxygen Therapy
,”
Ann. Am. Thorac. Soc.
,
18
(
9
), pp.
1498
1505
.10.1513/AnnalsATS.202005-487OC
6.
Jacobs
,
S. S.
,
Lindell
,
K. O.
,
Collins
,
E. G.
,
Garvey
,
C. M.
,
Hernandez
,
C.
,
McLaughlin
,
S.
,
Schneidman
,
A. M.
, and
Meek
,
P. M.
,
2018
, “
Patient Perceptions of the Adequacy of Supplemental Oxygen Therapy. Results of the American Thoracic Society Nursing Assembly Oxygen Working Group Survey
,”
Ann. Am. Thorac. Soc.
,
15
(
1
), pp.
24
32
.10.1513/AnnalsATS.201703-209OC
7.
Chen
,
J. Z.
,
Katz
,
I. M.
,
Pichelin
,
M.
,
Zhu
,
K.
,
Caillibotte
,
G.
,
Finlay
,
W. H.
, and
Martin
,
A. R.
,
2019
, “
In Vitro-in Silico Comparison of Pulsed Oxygen Delivery From Portable Oxygen Concentrators Versus Continuous Flow Oxygen Delivery
,”
Resp. Care
,
64
(
2
), pp.
117
129
.10.4187/respcare.06359
8.
Branson
,
R. D.
,
King
,
A.
, and
Giordano
,
S. P.
,
2019
, “
Home Oxygen Therapy Devices: Providing the Prescription
,”
Resp. Care
,
64
(
2
), pp.
230
232
.10.4187/respcare.06850
9.
Palwai
,
A.
,
Skowronski
,
M.
,
Coreno
,
A.
,
Drummond
,
C.
, and
McFadden
,
E. R.
, Jr.
,
2010
, “
Critical Comparisons of the Clinical Performance of Oxygen-Conserving Devices
,”
Am. J. Respir. Crit. Care Med.
,
181
(
10
), pp.
1061
1071
.10.1164/rccm.200910-1638OC
10.
Christianson
,
C.
,
2021
, “
Improving Portable Oxygen Concentrator Performance Through the Development of a New Nasal Interface
,”
M.Sc. thesis
,
University of Alberta
,
Edmonton, AB, Canada
.https://era.library.ualberta.ca/items/f063400f-7928-46a6-8188-6fd3a33c2a80
11.
Chen
,
J. Z.
,
Katz
,
I. M.
,
Pichelin
,
M.
,
Zhu
,
K.
,
Caillibotte
,
G.
,
Noga
,
M. L.
,
Finlay
,
W. H.
, and
Martin
,
A. R.
,
2017
, “
Comparison of Pulsed Versus Continuous Oxygen Delivery Using Realistic Adult Nasal Airway Replicas
,”
Int. J. Chron. Obstruct. Pulmon. Dis.
,
12
, pp.
2559
2571
.10.2147/COPD.S141976
12.
Metelits
,
J. B.
,
2015
, “
Flow Triggered Pulsed Oxygen Delivery for Medical Applications
,” U.S. Patent Application No. 14/476,552.
13.
Katz
,
I.
,
Chen
,
J.
,
Duong
,
K.
,
Zhu
,
K.
,
Pichelin
,
M.
,
Caillibotte
,
G.
, and
Martin
,
A. R.
,
2019
, “
Dose Variability of Supplemental Oxygen Therapy With Open Patient Interfaces Based on In Vitro Measurements Using a Physiologically Realistic Upper Airway Model
,”
Resp. Res.
,
20
, p.
149
.10.1186/s12931-019-1104-0
14.
Pillay
,
K.
,
Chen
,
J. Z.
,
Finlay
,
W. H.
, and
Martin
,
A. R.
,
2021
, “
Inhaled Nitric Oxide: In Vitro Analysis of Continuous Flow Noninvasive Delivery Via Nasal Cannula
,”
Resp. Care
,
66
(
2
), pp.
228
239
.10.4187/respcare.07737
15.
Golshahi
,
L.
,
Noga
,
M. L.
,
Thompson
,
R.
, and
Finlay
,
W. H.
,
2011
, “
In Vitro Deposition Measurement of Inhaled Micrometer-Sized Particles in Extrathoracic Airways of Children and Adolescents During Nose Breathing
,”
J. Aerosol Sci.
,
35
(
4
), p.
1
.10.1016/j.jaerosci.2011.04.002
16.
Martin
,
D. C.
,
2019
, “
Contemporary Portable Oxygen Concentrators and Diverse Breathing Behaviours—A Bench Comparison
,”
BMC Pulm. Med.
,
19
, p.
217
.10.1186/s12890-019-0980-x
17.
Gleeson
,
K.
,
Zwillich
,
C. W.
,
Braier
,
K.
, and
White
,
D. P.
,
1986
, “
Breathing Route During Sleep
,”
Am. Rev. Resp. Dis.
,
134
(
1
), pp.
115
120
.10.1164/arrd.1986.134.1.115
18.
Respironics
,
P.
,
2016
,
SimplyGo Mini User Manual
,
Respironics Inc
,
Murrysville, PA
.
19.
Martin
,
A. R.
,
Katz
,
I. M.
,
Jenöfi
,
K.
,
Caillibotte
,
G.
,
Brochard
,
L.
, and
Texereau
,
J.
,
2012
, “
Bench Experiments Comparing Simulated Inspiratory Effort When Breathing Helium-Oxygen Mixtures to That During Positive Pressure Support With Air
,”
BMC Pulm. Med.
,
12
(
1
), p.
62
.10.1186/1471-2466-12-62
20.
Kim
,
J. H.
,
Roberge
,
R. J.
,
Powell
,
J. B.
,
Shaffer
,
R. E.
,
Ylitalo
,
C. M.
, and
Sebastian
,
J. M.
,
2015
, “
Pressure Drop of Filtering Facepiece Respirators: How Low Should we Go?
,”
Int. J. Occup. Med. Environ.
,
28
(
1
), p.
71
.10.13075/ijomeh.1896.00153
21.
Bourassa
,
S.
,
Bouchard
,
P. A.
, and
Lellouche
,
F.
,
2019
, “
Impact of Gas Masks on the Work of Breathing and Breathing Pattern in Subjects With Stable COPD
,”
Resp. Care
,
64
(
9
), pp.
1049
1056
.10.4187/respcare.06550
You do not currently have access to this content.