Abstract

Critical care patients who experience acute respiratory distress syndrome are commonly placed on mechanical ventilators to improve oxygen delivery and overall gas exchange of the pulmonary system. With the pulmonary inflammation accompanying acute respiratory distress syndrome (ARDS), patients experience significant alterations in ventilation–perfusion (V/Q) ratios resulting in lower blood oxygenation. In severe cases, patients are typically rotated into a prone position to facilitate improved blood flow to portions of the lung that were not previously participating in the gas exchange process. However, proning a patient increases the risk of complications, requires up to seven hospital staff members to carry out, and does not guarantee an improvement in the patient's condition. The low-cost V/Q vest presented here was designed to reproduce the effects of proning while also requiring less hospital staff than the proning process. Additionally, the V/Q Vest helps hospital staff predict whether patients would respond well to a proning treatment. A pilot study was conducted on nine patients with ARDS from coronavirus disease 2019 (COVID-19). The average increase in oxygenation with the V/Q Vest treatment for all patients was 19.7±38.1%. Six of the nine patients responded positively to the V/Q Vest treatment, exhibiting increased oxygenation. The V/Q Vest also helped hospital staff predict that three of the five patients that were proned would experience an increase in oxygenation. An increase in oxygenation resulting from V/Q Vest treatment exceeded that of the proning treatment in two of these five proned patients.

References

1.
Rubenfeld
,
G. D.
,
Caldwell
,
E.
,
Peabody
,
E.
,
Weaver
,
J.
,
Martin
,
D. P.
,
Neff
,
M.
,
Stern
,
E. J.
, and
Hudson
,
L. D.
,
2005
, “
Incidence and Outcomes of Acute Lung Injury
,”
N. Engl. J. Med.
,
353
(
16
), pp.
1685
1693
.10.1056/NEJMoa050333
2.
Redant
,
S.
,
Devriendt
,
J.
,
Botta
,
I.
,
Attou
,
R.
,
De Bels
,
D.
,
Honoré
,
P. M.
, and
Pierrakos
,
C.
,
2019
, “
Diagnosing Acute Respiratory Distress Syndrome With the Berlin Definition: Which Technical Investigations Should Be the Best to Confirm It?
,”
J. Transl. Int. Med.
,
7
(
1
), pp.
1
2
.10.2478/jtim-2019-0001
3.
Bourenne
,
J.
,
Carvelli
,
J.
, and
Papazian
,
L.
,
2019
, “
Evolving Definition of Acute Respiratory Distress Syndrome
,”
J. Thorac. Dis.
,
11
(
S3
), pp.
S390
S393
.10.21037/jtd.2018.12.24
4.
Tzotzos
,
S. J.
,
Fischer
,
B.
,
Fischer
,
H.
, and
Zeitlinger
,
M.
,
2020
, “
Incidence of ARDS and Outcomes in Hospitalized Patients With COVID-19: A Global Literature Survey
,”
Crit. Care
,
24
(
1
), p.
516
.10.1186/s13054-020-03240-7
5.
Wunsch
,
H.
,
2020
, “
Mechanical Ventilation in COVID-19: Interpreting the Current Epidemiology
,”
Am. J. Respir. Crit. Care Med.
,
202
(
1
), pp.
1
4
.10.1164/rccm.202004-1385ED
6.
Hasan
,
S. S.
,
Capstick
,
T.
,
Ahmed
,
R.
,
Kow
,
C. S.
,
Mazhar
,
F.
,
Merchant
,
H. A.
, and
Zaidi
,
S.
,
2020
, “
Mortality in COVID-19 Patients With Acute Respiratory Distress Syndrome and Corticosteroids Use: A Systematic Review and Meta-Analysis
,”
Expert Rev. Respir. Med.
,
14
(
11
), pp.
1149
1163
.10.1080/17476348.2020.1804365
7.
Mahmood
,
N. A.
,
Chaudry
,
F. A.
,
Azam
,
H.
,
Ali
,
M. I.
, and
Khan
,
M. A.
,
2013
, “
Frequency of Hypoxic Events in Patients on a Mechanical Ventilator
,”
Int. J. Crit. Illness Inj. Sci.
,
3
(
2
), pp.
124
129
.10.4103/2229-5151.114272
8.
Santamarina
,
M. G.
,
Boisier
,
D.
,
Contreras
,
R.
,
Baque
,
M.
,
Volpacchio
,
M.
, and
Beddings
,
I.
,
2020
, “
COVID-19: A Hypothesis Regarding the Ventilation-Perfusion Mismatch
,”
Crit. Care
,
24
(
1
), p.
395
.10.1186/s13054-020-03125-9
9.
Rice
,
T. W.
,
Wheeler
,
A. P.
,
Bernard
,
G. R.
,
Hayden
,
D. L.
,
Schoenfeld
,
D. A.
, and
Ware
,
L. B.
, and
National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network
,
2007
, “
Comparison of the SpO2/FIO2 Ratio and the PaO2/FIO2 Ratio in Patients With Acute Lung Injury or ARDS
,”
Chest
,
132
(
2
), pp.
410
417
.10.1378/chest.07-0617
10.
Ferguson
,
N. D.
,
Fan
,
E.
,
Camporota
,
L.
,
Antonelli
,
M.
,
Anzueto
,
A.
,
Beale
,
R.
,
Brochard
,
L.
, et al.,
2012
, “
The Berlin Definition of ARDS: An Expanded Rationale, Justification, and Supplementary Material
,”
Intensive Care Med.
,
38
(
10
), pp.
1573
1582
.10.1007/s00134-012-2682-1
11.
Bein
,
T.
,
Grasso
,
S.
,
Moerer
,
O.
,
Quintel
,
M.
,
Guerin
,
C.
,
Deja
,
M.
,
Brondani
,
A.
, and
Mehta
,
S.
,
2016
, “
The Standard of Care of Patients With ARDS: Ventilatory Settings and Rescue Therapies for Refractory Hypoxemia
,”
Intensive Care Med.
,
42
(
5
), pp.
699
711
.10.1007/s00134-016-4325-4
12.
Hopkins
,
S. R.
,
Henderson
,
A. C.
,
Levin
,
D. L.
,
Yamada
,
K.
,
Arai
,
T.
,
Buxton
,
R. B.
, and
Prisk
,
G. K.
,
2007
, “
Vertical Gradients in Regional Lung Density and Perfusion in the Supine Human Lung: The Slinky Effect
,”
J. Appl. Physiol.
,
103
(
1
), pp.
240
248
.10.1152/japplphysiol.01289.2006
13.
Wiggermann
,
N.
,
Zhou
,
J.
, and
Kumpar
,
D.
,
2020
, “
Proning Patients With COVID-19: A Review of Equipment and Methods
,”
Hum. Factors
,
62
(
7
), pp.
1069
1076
.10.1177/0018720820950532
14.
Berkow
,
L.
, and
Kanowitz
,
A.
,
2020
, “
COVID-19 Putting Patients at Risk of Unplanned Extubation and Airway Providers at Increased Risk of Contamination
,”
Anesth. Analg.
,
131
(
1
), pp.
e41
e43
.10.1213/ANE.0000000000004890
15.
Baacke
,
M. G.
,
Neubert
,
T.
,
Spies
,
M.
,
Gotzen
,
L.
, and
Stiletto
,
R. J.
,
2002
, “
Rotoprone®: A New and Promising Way to Prone Positioning
,”
Crit. Care
,
6
(
Suppl 1
), p.
P19
.10.1186/cc1651
16.
Shaefi
,
S.
,
Brenner
,
S. K.
,
Gupta
,
S.
,
O'Gara
,
B. P.
,
Krajewski
,
M. L.
,
Charytan
,
D. M.
,
Chaudhry
,
S.
, et al.,
2021
, “
Extracorporeal Membrane Oxygenation in Patients With Severe Respiratory Failure From COVID-19
,”
Intensive Care Med.
,
47
(
2
), pp.
208
221
.10.1007/s00134-020-06331-9
17.
Mishra
,
V.
,
Svennevig
,
J. L.
,
Bugge
,
J. F.
,
Andresen
,
S.
,
Mathisen
,
A.
,
Karlsen
,
H.
,
Khushi
,
I.
, and
Hagen
,
T. P.
,
2010
, “
Cost of Extracorporeal Membrane Oxygenation: Evidence From the Rikshospitalet University Hospital, Oslo, Norway
,”
Eur. J. Cardiothorac. Surg.
,
37
(
2
), pp.
339
342
.10.1016/j.ejcts.2009.06.059
18.
Rezoagli
,
E.
,
Bastia
,
L.
,
Grassi
,
A.
,
Chieregato
,
A.
,
Langer
,
T.
,
Grasselli
,
G.
,
Caironi
,
P.
, et al.,
2021
, “
Paradoxical Effect of Chest Wall Compression on Respiratory System Compliance: A Multicenter Case Series of Patients With ARDS, With Multimodal Assessment
,”
Chest
, 160(
4
), pp.
1335
1339
.10.1016/j.chest.2021.05.057
19.
Samanta
,
S.
,
Samanta
,
S.
, and
Soni
,
K. D.
,
2014
, “
Supine Chest Compression: alternative to Prone Ventilation in Acute Respiratory Distress Syndrome
,”
Am. J. Emerg. Med.
,
32
(
5
), pp.
489.e5
489.e6
.10.1016/j.ajem.2013.11.014
20.
Carteaux
,
G.
,
Tuffet
,
S.
, and
Mekontso Dessap
,
A.
,
2021
, “
Potential Protective Effects of Continuous Anterior Chest Compression in the Acute Respiratory Distress Syndrome: Physiology of an Illustrative Case
,”
Crit. Care
,
25
(
1
), p.
187
.10.1186/s13054-021-03619-0
21.
Ambrose
,
A. B.
,
Tiziani
,
L.
,
Ward
,
D. J.
,
Weinmann
,
M.
, and
Hammond
,
F. L.
, III
,
2021
, “
A Pneumatic Compression Vest for Transthoracic Manipulation of Ventilation-Perfusion in Critical Care Patients With Acute Respiratory Distress Syndrome Caused by COVID-19
,”
ASME
Paper No. DMD2021-1056.10.1115/DMD2021-1056
22.
Gao
,
M.
,
Piernas
,
C.
,
Astbury
,
N. M.
,
Hippisley-Cox
,
J.
,
O'Rahilly
,
S.
,
Aveyard
,
P.
, and
Jebb
,
S. A.
,.
2021
, “
Associations Between Body-Mass Index and COVID-19 Severity in 6·9 Million People in England: A Prospective, Community-Based, Cohort Study
,”
Lancet Diabetes Endocrinol.
,
9
(
6
), pp.
350
359
.10.1016/S2213-8587(21)00089-9
23.
Vandenbunder
,
B.
,
Ehrmann
,
S.
,
Piagnerelli
,
M.
,
Sauneuf
,
B.
,
Serck
,
N.
,
Soumagne
,
T.
,
Textoris
,
J.
, et al.,
and COVADIS Study Group,
2021
, “
Static Compliance of the Respiratory System in COVID-19 Related ARDS: An International Multicenter Study
,”
Crit. Care
,
25
(
1
), p.
52
.10.1186/s13054-020-03433-0
24.
Gattinoni
,
L.
,
Chiumello
,
D.
,
Carlesso
,
E.
, and
Valenza
,
F.
,
2004
, “
Bench-to-Bedside Review: Chest Wall Elastance in Acute Lung Injury/Acute Respiratory Distress Syndrome Patients
,”
Crit. Care
,
8
(
5
), pp.
350
355
.10.1186/cc2854
25.
Desai
,
J. P.
, and
Moustarah
,
F.
,
2021
, “
Pulmonary Compliance
,”
StatPearls [Internet]
,
StatPearls Publishing
,
Treasure Island, FL
.
26.
Nardelli
,
L. M.
,
Garcia
,
C. S.
,
Pássaro
,
C. P.
, and
Rocco
,
P. R.
,
2007
, “
Understanding the Mechanisms of Ventilator-Induced Lung Injury
,”
Rev. Bras. Ter. Intensiva
,
19
(
4
), pp.
469
474
.10.1590/S0103-507X2007000400011
27.
Mion
,
D.
, and
Pierin
,
A. M.
,
1998
, “
How Accurate Are Sphygmomanometers?
,”
J. Hum. Hypertens.
,
12
(
4
), pp.
245
248
.10.1038/sj.jhh.1000589
You do not currently have access to this content.