Abstract

Computational modeling is of growing importance in orthopedics and biomechanics as a tool to understand differences in pathology and predict outcomes from surgical interventions. However, the computational models of the knee have historically relied on in vitro data to create and calibrate model material properties due to the unavailability of accurate in vivo data. This work demonstrates the design and use of a custom device to quantify anterior-posterior (AP) and internal-external (IE) in vivo knee laxity, with an accuracy similar to existing in vitro methods. The device uses high-speed stereo radiography (HSSR) tracking techniques to accurately measure the resulting displacements of the femur, tibia, and patella bones during knee laxity assessment at multiple loads and knee flexion angles. The accuracy of the knee laxity apparatus was determined by comparing laxity data from two cadaveric specimens between the knee laxity apparatus and an existing in vitro robotic knee joint simulator. The accuracy of the knee laxity apparatus was within 1 mm (0.04 in.) for AP and 2.5 deg for IE. Additionally, two living subjects completed knee laxity testing to confirm the laboratory use of the novel apparatus. This work demonstrates the ability to use custom devices in HSSR to collect accurate data, in vivo, for calibration of computational models.

References

1.
Ng
,
V. Y.
,
DeClaire
,
J. H.
,
Berend
,
K. R.
,
Gulick
,
B. C.
, and
Lombardi
,
A. V.
,
2012
, “
Improved Accuracy of Alignment With Patient-Specific Positioning Guides Compared With Manual Instrumentation in TKA
,”
Clin. Orthop. Relat. Res.
,
470
(
1
), pp.
99
107
.10.1007/s11999-011-1996-6
2.
Haglin
,
J. M.
,
Eltorai
,
A. E. M.
,
Gil
,
J. A.
,
Marcaccio
,
S. E.
,
Botero-Hincapie
,
J.
, and
Daniels
,
A. H.
,
2016
, “
Patient-Specific Orthopaedic Implants
,”
Orthop. Surg.
,
8
(
4
), pp.
417
424
.10.1111/os.12282
3.
Patil
,
S.
,
Bunn
,
A.
,
Bugbee
,
W. D.
,
Colwell
,
C. W.
, and
D'Lima
,
D. D.
,
2015
, “
Patient-Specific Implants With Custom Cutting Blocks Better Approximate Natural Knee Kinematics Than Standard TKA Without Custom Cutting Blocks
,”
Knee
,
22
(
6
), pp.
624
629
.10.1016/j.knee.2015.08.002
4.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimentional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.10.1016/0021-9290(95)00149-2
5.
Harris
,
M. D.
,
Cyr
,
A. J.
,
Ali
,
A. A.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
, and
Shelburne
,
K. B.
,
2016
, “
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
8
), pp.
1
8
.10.1115/1.4033882
6.
Baldwin
,
M. A.
,
Clary
,
C.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2009
, “
Verification of Predicted Specimen-Specific Natural and Implanted Patellofemoral Kinematics During Simulated Deep Knee Bend
,”
J. Biomech.
,
42
(
14
), pp.
2341
2348
.10.1016/j.jbiomech.2009.06.028
7.
Mootanah
,
R.
,
Imhauser
,
C. W.
,
Reisse
,
F.
,
Carpanen
,
D.
,
Walker
,
R. W.
,
Koff
,
M. F.
,
Lenhoff
,
M. W.
,
Rozbruch
,
S. R.
,
Fragomen
,
A. T.
,
Dewan
,
Z.
,
Kirane
,
Y. M.
,
Cheah
,
K.
,
Dowell
,
J. K.
, and
Hillstrom
,
H. J.
,
2014
, “
Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
13
), pp.
1502
1517
.10.1080/10255842.2014.899588
8.
Ali
,
A. A.
,
Shalhoub
,
S. S.
,
Cyr
,
A. J.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Validation of Predicted Patellofemoral Mechanics in a Finite Element Model of the Healthy and Cruciate-Deficient Knee
,”
J. Biomech.
,
49
(
2
), pp.
302
309
.10.1016/j.jbiomech.2015.12.020
9.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
10.
Hume
,
D. R.
,
Navacchia
,
A.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2019
, “
A Lower Extremity Model for Muscle-Driven Simulation of Activity Using Explicit Finite Element Modeling
,”
J. Biomech.
,
84
(
xxxx
), pp.
153
160
.10.1016/j.jbiomech.2018.12.040
11.
Li
,
G.
,
Lopez
,
O.
, and
Rubash
,
H.
,
2001
, “
Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis
,”
ASME J. Biomech. Eng.
,
123
(
4
), pp.
341
346
.10.1115/1.1385841
12.
Emery
,
M.
,
Moffroid
,
M.
,
Boerman
,
J.
,
Fleming
,
B.
,
Howe
,
J.
, and
Pope
,
M.
,
1989
, “
Reliability of Force/Displacement Measures in a Clinical Device Designed to Measure Ligamentous Laxity at the Knee
,”
J. Orthop. Sports Phys. Ther.
,
10
(
11
), pp.
441
447
.10.2519/jospt.1989.10.11.441
13.
Daniel
,
D. M.
,
Stone
,
M. L.
,
Sachs
,
R.
, and
Malcom
,
L.
,
1985
, “
Instrumented Measurement of Anterior Knee Laxity in Patients With Acute Anterior Cruciate Ligament Disruption
,”
Am. J. Sports Med.
,
13
(
6
), pp.
401
407
.10.1177/036354658501300607
14.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
(
9
), pp.
705
720
.10.1016/0021-9290(88)90280-1
15.
Skinner
,
H. B.
,
Wyatt
,
M. P.
,
Stone
,
M. L.
,
Hodgdon
,
J. A.
, and
Barrack
,
R. L.
,
1986
, “
Exercise-Related Knee Joint Laxity
,”
Am. J. Sports Med.
,
14
(
1
), pp.
30
34
.10.1177/036354658601400106
16.
Erdemir
,
A.
,
Besier
,
T. F.
,
Halloran
,
J. P.
,
Imhauser
,
C. W.
,
Laz
,
P. J.
,
Morrison
,
T. M.
, and
Shelburne
,
K. B.
,
2019
, “
Deciphering the ‘Art’ in Modeling and Simulation of the Knee Joint: Overall Strategy
,”
ASME J. Biomech. Eng.
,
141
(
7
), pp.
1
10
.10.1115/1.4043346
17.
Peters
,
A. E.
,
Akhtar
,
R.
,
Comerford
,
E. J.
, and
Bates
,
K. T.
,
2018
, “
Tissue Material Properties and Computational Modelling of the Human Tibiofemoral Joint: A Critical Review
,”
PeerJ
,
2018
(
1
), pp.
1
48
.10.7717/peerj.4298
18.
Navacchia
,
A.
,
Hume
,
D. R.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2019
, “
A Computationally Efficient Strategy to Estimate Muscle Forces in a Finite Element Musculoskeletal Model of the Lower Limb
,”
J. Biomech.
,
84
(
xxxx
), pp.
94
102
.10.1016/j.jbiomech.2018.12.020
19.
Esrafilian
,
A.
,
Stenroth
,
L.
,
Mononen
,
M. E.
,
Tanska
,
P.
,
Avela
,
J.
, and
Korhonen
,
R. K.
,
2020
, “
EMG-Assisted Muscle Force Driven Finite Element Model of the Knee Joint With Fibril-Reinforced Poroelastic Cartilages and Menisci
,”
Sci. Rep.
,
10
(
1
), pp.
1
16
.10.1038/s41598-020-59602-2
20.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
, and
Rullkoetter
,
P. J.
,
2010
, “
Computationally Efficient Finite Element Evaluation of Natural Patellofemoral Mechanics
,”
ASME J. Biomech. Eng.
,
132
(
12
), pp.
1
8
.10.1115/1.4002854
21.
Rangger
,
C.
,
Daniel
,
D. M.
,
Stone
,
M. L.
, and
Kaufman
,
K.
,
1993
, “
Diagnosis of an ACL Disruption With KT-1000 Arthrometer Measurements
,”
Knee Surg. Sport. Traumatol. Arthrosc.
,
1
(
1
), pp.
60
66
.10.1007/BF01552161
22.
Collette
,
M.
,
Courville
,
J.
,
Forton
,
M.
, and
Gagnière
,
B.
,
2012
, “
Objective Evaluation of Anterior Knee Laxity; Comparison of the KT-1000 and GNRB® Arthrometers
,”
Knee Surg., Sport. Traumatol. Arthrosc.
,
20
(
11
), pp.
2233
2238
.10.1007/s00167-011-1869-2
23.
Lorenz
,
A.
,
Krickl
,
V.
,
Ipach
,
I.
,
Arlt
,
E. M.
,
Wülker
,
N.
, and
Leichtle
,
U. G.
,
2015
, “
Practicability for Robot-Aided Measurement of Knee Stability in-Vivo Orthopedics and Biomechanics
,”
BMC Musculoskelet. Disord.
,
16
(
1
), pp.
1
9
.10.1186/s12891-015-0826-5
24.
Beukes
,
G. L.
,
Patnaik
,
S.
, and
Sivarasu
,
S.
,
2018
, “
In Vitro Functional Verification of a Novel Laxity Measurement Stress Radiography Device
,”
ASME
Paper No. DMD2018-6943.10.1115/DMD2018-6943
25.
Kupper
,
J. C.
,
Westover
,
L.
,
Frayne
,
R.
, and
Ronsky
,
J. L.
,
2016
, “
Application of a Novel Measure of In Vivo Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
10
), pp.
1
7
.10.1115/1.4034169
26.
Fleming
,
B. C.
,
Brattbakk
,
B.
,
Peura
,
G. D.
,
Badger
,
G. J.
, and
Beynnon
,
B. D.
,
2002
, “
Measurement of Anterior-Posterior Knee Laxity: A Comparison of Three Techniques
,”
J. Orthop. Res.
,
20
(
3
), pp.
421
426
.10.1016/S0736-0266(01)00134-6
27.
Moewis
,
P.
,
Duda
,
G. N.
,
Jung
,
T.
,
Heller
,
M. O.
,
Boeth
,
H.
,
Kaptein
,
B.
, and
Taylor
,
W. R.
,
2016
, “
The Restoration of Passive Rotational Tibio-Femoral Laxity After Anterior Cruciate Ligament Reconstruction
,”
PLoS One
,
11
(
7
), p.
e0159600
.10.1371/journal.pone.0159600
28.
Carpenter
,
R. D.
,
Shefelbine
,
S. J.
,
Lozano
,
J.
,
Carballido-Gamio
,
J.
,
Majumdar
,
S.
, and
Ma
,
C. B.
,
2008
, “
A New Device for Measuring Knee Rotational Kinematics Using Magnetic Resonance Imaging
,”
ASME J. Med. Devices, Trans.
,
2
(
4
), pp.
1
5
.10.1115/1.2976029
29.
Colombet
,
P.
,
Jenny
,
J. Y.
,
Menetrey
,
J.
,
Plaweski
,
S.
, and
Zaffagnini
,
S.
,
2012
, “
Current Concept in Rotational Laxity Control and Evaluation in ACL Reconstruction
,”
Orthop. Traumatol. Surg. Res.
,
98
(
8
), pp.
S201
S210
.10.1016/j.otsr.2012.10.005
30.
Pedersen
,
D.
,
Vanheule
,
V.
,
Wirix-Speetjens
,
R.
,
Taylan
,
O.
,
Delport
,
H. P.
,
Scheys
,
L.
, and
Andersen
,
M. S.
,
2019
, “
A Novel Non-Invasive Method for Measuring Knee Joint Laxity in Four DOF: In Vitro Proof-of-Concept and Validation
,”
J. Biomech.
,
82
, pp.
62
69
.10.1016/j.jbiomech.2018.10.016
31.
Fitzpatrick
,
C. K.
,
Maag
,
C.
,
Clary
,
C. W.
,
Metcalfe
,
A.
,
Langhorn
,
J.
, and
Rullkoetter
,
P. J.
,
2016
, “
Validation of a New Computational 6-DOF Knee Simulator During Dynamic Activities
,”
J. Biomech.
,
49
(
14
), pp.
3177
3184
.10.1016/j.jbiomech.2016.07.040
32.
Churchill
,
E.
, and
McConville
,
J. T.
,
1976
, “
Sampling and Data Gathering Strategies for Future USAF Anthropometry
,”
AMRL-TR
,
74
(
102
), pp.
1
133
.https://apps.dtic.mil/sti/citations/ADA025240
33.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
,
2002
, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
,
35
(
7
), pp.
943
950
.10.1016/S0021-9290(02)00041-6
34.
Markolf
,
K. L.
,
Mensch
,
J. S.
, and
Amstutz
,
H. C.
,
1976
, “
Stiffness and Laxity of the Knee - The Contributions of the Supporting Structures
,”
J. Bone Jt. Surg.
,
58-A
(
5
), pp.
583
594
.https://journals.lww.com/jbjsjournal/Abstract/1976/58050/Stiffness_and_laxity_of_the_knee__the.1.aspx
35.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.10.1016/j.jbiomech.2009.05.003
36.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
37.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
356
, pp.
111
118
. 10.1097/00003086-199811000-00016
38.
Kefala
,
V.
,
Ali
,
A. A.
,
Mannen
,
E. M.
, and
Shelburne
,
K. B.
,
2021
, “
Patellofemoral Kinematics in Healthy Older Adults During Gait Activities
,”
Hum. Mov. Sci.
,
75
, p.
102746
.10.1016/j.humov.2020.102746
39.
Ivester
,
J. C.
,
Cyr
,
A. J.
,
Harris
,
M. D.
,
Kulis
,
M. J.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2015
, “
A Reconfigurable High-Speed Stereo-Radiography System for Sub-Millimeter Measurement of In Vivo Joint Kinematics
,”
J. Med. Devices, Trans. ASME
,
9
(
4
), pp.
1
7
.10.1115/1.4030778
40.
Wang
,
F.
,
Vemuri
,
B.
,
Rao
,
M.
, and
Chen
,
Y.
,
2004
, “
Cumulative Residual Entropy: A New Measure of Information
,”
IEEE Trans. Inf. Theory
,
50
(
6
), pp.
1220
1228
.10.1109/TIT.2004.828057
41.
Behnam
,
Y. A.
,
Krishnan
,
A. A.
, and
Clary
,
C. W.
,
2020
, “
Experimental Method and Computational Model for Evaluation of Knee Joint Mechanics
,”
ORS 2020 Annual Meeting
, Orthopaedic Research Society, Phoenix, AZ, Feb. 8–11, Paper No. 1058, p.
2017
.
42.
McKay
,
W. P.
,
Chilibeck
,
P. D.
,
Daku
,
B. L. F.
, and
Lett
,
B.
,
2010
, “
Quantifying the Mechanical Work of Resting Quadriceps Muscle Tone
,”
Eur. J. Appl. Physiol.
,
108
(
4
), pp.
641
648
.10.1007/s00421-009-1261-9
43.
Hindle
,
K.
,
Whitcomb
,
T.
,
Briggs
,
W.
, and
Hong
,
J.
,
2012
, “
Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function
,”
J. Hum. Kinet.
,
31
(
2012
), pp.
105
113
.10.2478/v10078-012-0011-y
44.
Markolf
,
K. L.
,
Kochan
,
A.
, and
Amstutz
,
H. C.
,
1984
, “
Measurement of Knee Stiffness and Laxity in Patients With Documented Absence of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg.
,
66
(
2
), pp.
242
253
.10.2106/00004623-198466020-00011
45.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L. Y.
, and
Fu
,
F. H.
,
1996
, “
A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments
,”
J. Biomech.
,
29
(
10
), pp.
1357
1360
.10.1016/0021-9290(96)00056-5
46.
Shultz
,
S. J.
,
Shimokochi
,
Y.
,
Nguyen
,
A.-D.
,
Schmitz
,
R. J.
,
Beynnon
,
B. D.
, and
Perrin
,
D. H.
,
2007
, “
Measurement of Varus–Valgus and Internal–External Rotational Knee Laxities In Vivo—Part I: Assessment of Measurement Reliability and Bilateral Asymmetry
,”
J. Orthop. Res.
,
25
(
8
), pp.
981
988
.10.1002/jor.20397
47.
Hume
,
D. R.
,
Kefala
,
V.
,
Harris
,
M. D.
, and
Shelburne
,
K. B.
,
2018
, “
Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living
,”
Ann. Biomed. Eng.
,
46
(
11
), pp.
1806
1815
.10.1007/s10439-018-2068-9
48.
Kupper
,
J. C.
,
2008
,
A Novel Measure of In-Vivo Knee Joint Laxity
,
University of Calgary
, Calgary, AB, Canada.10.11575/PRISM/20005
49.
Barcellona
,
M. G.
,
Morrissey
,
M. C.
,
Milligan
,
P.
, and
Amis
,
A. A.
,
2014
, “
The Effect of Thigh Muscle Activity on Anterior Knee Laxity in the Uninjured and Anterior Cruciate Ligament-Injured Knee
,”
Knee Surg., Sport Traumatol. Arthrosc.
,
22
(
11
), pp.
2821
2829
.10.1007/s00167-013-2695-5
50.
Liu
,
W.
, and
Maitland
,
M. E.
,
2000
, “
The Effect of Hamstring Muscle Compensation for Anterior Laxity in the ACL-Deficient Knee During Gait
,”
J. Biomech.
,
33
(
7
), pp.
871
879
.10.1016/S0021-9290(00)00047-6
51.
Un
,
B. S.
,
Beynnon
,
B. D.
,
Churchill
,
D. L.
,
Haugh
,
L. D.
,
Risberg
,
M. A.
, and
Fleming
,
B. C.
,
2001
, “
A New Device to Measure Knee Laxity During Weightbearing and Non-Weightbearing Conditions
,”
J. Orthop. Res.
,
19
(
6
), pp.
1185
1191
.10.1016/S0736-0266(01)00055-9
52.
Pollard
,
C. D.
,
Braun
,
B.
, and
Hamill
,
J.
,
2006
, “
Influence of Gender, Estrogen and Exercise on Anterior Knee Laxity
,”
Clin. Biomech.
,
21
(
10
), pp.
1060
1066
.10.1016/j.clinbiomech.2006.07.002
53.
Rozzi
,
S. L.
,
Lephart
,
S. M.
,
Gear
,
W. S.
, and
Fu
,
F. H.
,
1999
, “
Knee Joint Laxity and Neuromuscular Characteristics of Male and Female Soccer and Basketball Players
,”
Am. J. Sports Med.
,
27
(
3
), pp.
312
319
.10.1177/03635465990270030801
54.
Park
,
H. S.
,
Wilson
,
N. A.
, and
Zhang
,
L. Q.
,
2008
, “
Gender Differences in Passive Knee Biomechanical Properties in Tibial Rotation
,”
J. Orthop. Res.
,
26
(
7
), pp.
937
944
.10.1002/jor.20576
55.
Park
,
S. K.
,
Stefanyshyn
,
D. J.
,
Loitz-Ramage
,
B.
,
Hart
,
D. A.
, and
Ronsky
,
J. L.
,
2009
, “
Changing Hormone Levels During the Menstrual Cycle Affect Knee Laxity and Stiffness in Healthy Female Subjects
,”
Am. J. Sports Med.
,
37
(
3
), pp.
588
598
.10.1177/0363546508326713
56.
Harmon
,
K. G.
, and
Ireland
,
M. L.
,
2000
, “
Gender Differences in Noncontact Anterior Cruciate Ligament Injuries
,”
Clin. Sports Med.
,
19
(
2
), pp.
287
302
.10.1016/S0278-5919(05)70204-0
You do not currently have access to this content.