Abstract

A computational model of the human torso has been developed to study the stability of implanted leads that are part of a sacral nerve stimulation system. The model was built using presegmented anatomies that were themselves built from imaging of human patients. The sacral leads are represented using beam elements, and their interaction with the tissue is defined using a function that relates frictional force to the amount of slip between the lead and tissue. Displacements to the skin in the sacral region are applied to simulate activities of daily living, and the resulting displacement of the tip of the lead is indicative of its tendency to dislodge in real patients. Validation of the model was performed using experimental results collected in human cadavers. In these experiments, analogous displacements of the skin were applied after implantation of the leads per normal implant procedures. The displacement of the distal tip of the lead was measured using computed tomography (CT) imaging, allowing direct comparison to the predictions of the model. Recognizing that many model inputs were informed by sparse literature values, a novel application of uncertainty quantification methodology was developed wherein all model inputs were treated as uncertain intervals. This allowed an optimization approach to be used for estimating the uncertain interval for the model outputs. The computational model and cadaver results were used to study the performance of a new sacral lead design, relative to a predicate product. The results showed that the reduction in lead axial stiffness in the new design leads to less lead tip displacement, such that the lead is more likely to remain near the therapeutic target in patients.

References

1.
Bader
,
D. L.
,
Worsley
,
P. R.
, and
Gefen
,
A.
,
2019
, “
Bioengineering Considerations in the Prevention of Medical Device-Related Pressure Ulcers
,”
Clin. Biomech.
,
67
, pp.
70
77
.10.1016/j.clinbiomech.2019.04.018
2.
Katzengold
,
R.
,
Topaz
,
M.
, and
Gefen
,
A.
,
2016
, “
Tissue Loads Applied by a Novel Medical Device for Closing Large Wounds
,”
J. Tissue Viability
,
25
(
1
), pp.
32
40
.10.1016/j.jtv.2015.12.003
3.
Terzano
,
M.
,
Dini
,
D.
,
Rodriguez y Baena
,
F.
,
Spagnoli
,
A.
, and
Oldfield
,
M.
,
2020
, “
An Adaptive Finite Element Model for Steerable Needles
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1809
1820
.10.1007/s10237-020-01310-x
4.
Crites-Bachert
,
M. A.
,
Mukati
,
M.
,
Sorial
,
A.
, and
Ghoniem
,
G. M.
,
2011
, “
Percutaneous Nerve Evaluation in Women: Lessons Learned
,”
Female Pelvic Med. Reconstr. Surg.
,
17
(
6
), pp.
293
297
.10.1097/SPV.0b013e318239b57d
5.
Shalom
,
D. F.
,
Pillalamarri
,
N.
,
Xue
,
X.
,
Kohn
,
N.
,
Lind
,
L. R.
,
Winkler
,
H. A.
, and
Metz
,
C. N.
,
2014
, “
Sacral Nerve Stimulation Reduces Elevated Urinary Nerve Growth Factor Levels in Women With Symptomatic Detrusor Overactivity
,”
Am. J. Obstet. Gynecol.
,
211
(
5
), p.
561.e1
.10.1016/j.ajog.2014.07.007
6.
Leong, R. K., De Wachter, S. G., Nieman, F. H., de Bie, R. A., and van Kerrebroeck, P. E., 2011, “PNE Versus 1st Stage Tined Lead Procedure: A Direct Comparison to Select the Most Sensitive Test Method to Identify Patients Suitable for Sacral Neuromodulation Therapy,”
Neurourol. Urodyn.
, 30(7), pp. 1249–1252.10.1002/nau.20979
7.
Segars
,
W. P.
,
Tsui
,
B. M. W.
,
Cai
,
J.
,
Yin
,
F.-F.
,
Fung
,
G. S. K.
, and
Samei
,
E.
,
2018
, “
Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond
,”
IEEE Trans. Med. Imaging
,
37
(
3
), pp.
680
692
.10.1109/TMI.2017.2738448
8.
Segars
,
W. P.
,
Sturgeon
,
G.
,
Mendonca
,
S.
,
Grimes
,
J.
, and
Tsui
,
B. M.
,
2010
, “
4D XCAT Phantom for Multimodality Imaging Research
,”
Med. Phys.
,
37
(
9
), pp.
4902
4915
.10.1118/1.3480985
9.
Annaidh
,
A. N.
,
Bruyère
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Otténio
,
M.
,
2012
, “
Characterization of the Anisotropic Mechanical Properties of Excised Human Skin
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
139
148
.10.1016/j.jmbbm.2011.08.016
10.
Joodaki
,
H.
, and
Panzer
,
M. B.
,
2018
, “
Skin Mechanical Properties and Modeling: A Review
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
232
(
4
), pp.
323
343
.10.1177/0954411918759801
11.
Aldieri
,
A.
,
Terzini
,
M.
,
Bignardi
,
C.
,
Zanetti
,
E. M.
, and
Audenino
,
A. L.
,
2017
, “
A Constitutive Framework for Human Dermis Mechanical Modelling
,”
Materials and Contact Characterisation VIII
, WIT Trans. on Eng. Sciences, WIT Press, Southampton, UK, Vol. 116, pp.
367
378
.10.2495/MC170381
12.
Aldieri
,
A.
,
Terzini
,
M.
,
Bignardi
,
C.
,
Zanetti
,
E. M.
, and
Audenino
,
A. L.
,
2018
, “
Implementation and Validation of Constitutive Relations for Human Dermis Mechanical Response
,”
Med. Biol. Eng. Comput.
,
56
(
11
), pp.
2083
2093
.10.1007/s11517-018-1843-y
13.
Lapeer
,
R. J.
,
Gasson
,
P. D.
, and
Karri
,
V.
,
2010
, “
Simulating Plastic Surgery: From Human Skin Tensile Tests, Through Hyperelastic Finite Element Models to Real-Time Haptics
,”
Prog. Biophys. Mol. Biol.
,
103
(
2–3
), pp.
208
216
.10.1016/j.pbiomolbio.2010.09.013
14.
Comley
,
K.
, and
Fleck
,
N.
,
2012
, “
The Compressive Response of Porcine Adipose Tissue From Low to High Strain Rate
,”
Int. J. Impact Eng.
,
46
, pp.
1
10
.10.1016/j.ijimpeng.2011.12.009
15.
Sommer
,
G.
,
Eder
,
M.
,
Kovac
,
S. L.
,
Pathak
,
H.
,
Bonitz
,
L.
,
Mueller
,
C.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2013
, “
Multiaxial Mechanical Properties and Constitutive Modeling of Human Adipose Tissue: A Basis for Preoperative Simulations in Plastic and Reconstructive Surgery
,”
Acta Biomater.
,
9
(
11
), pp.
9036
9048
.10.1016/j.actbio.2013.06.011
16.
Alkhouli
,
N.
,
Mansfield
,
J.
,
Green
,
E.
,
Bell
,
J.
,
Knight
,
B.
,
Liversedge
,
N.
,
Tham
,
J. C.
,
Welbourn
,
R.
,
Shore
,
A. C.
,
Kos
,
K.
, and
Winlove
,
C. P.
,
2013
, “
The Mechanical Properties of Human Adipose Tissues and Their Relationships to the Structure and Composition of the Extracellular Matrix
,”
Am. J. Physiol. Endocrinol. Metab.
,
305
(
12
), pp.
E1427
E1435
.10.1152/ajpendo.00111.2013
17.
Takaza
,
M.
,
Moerman
,
K. M.
,
Gindre
,
J.
,
Lyons
,
G.
, and
Simms
,
C. K.
,
2013
, “
The Anisotropic Mechanical Behaviour of Passive Skeletal Muscle Tissue Subjected to Large Tensile Strain
,”
J. Mech. Behav. Biomed. Mater.
,
17
, pp.
209
220
.10.1016/j.jmbbm.2012.09.001
18.
Gras
,
L. L.
,
Mitton
,
D.
,
Viot
,
P.
, and
Laporte
,
S.
,
2012
, “
Hyper-Elastic Properties of the Human Sternocleidomastoideus Muscle in Tension
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
131
140
.10.1016/j.jmbbm.2012.06.013
19.
Bosboom
,
E. M.
,
Hesselink
,
M. K.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
,
Drost
,
M. R.
, and
Baaijens
,
F. P.
,
2001
, “
Passive Transverse Mechanical Properties of Skeletal Muscle Under In Vivo Compression
,”
J. Biomech.
,
34
(
10
), pp.
1365
1368
.10.1016/S0021-9290(01)00083-5
20.
Böl
,
M.
,
Ehret
,
A. E.
,
Leichsenring
,
K.
,
Weichert
,
C.
, and
Kruse
,
R.
,
2014
, “
On the Anisotropy of Skeletal Muscle Tissue Under Compression
,”
Acta Biomater.
,
10
(
7
), pp.
3225
3234
.10.1016/j.actbio.2014.03.003
21.
Calvo
,
B.
,
Ramírez
,
A.
,
Alonso
,
A.
,
Grasa
,
J.
,
Soteras
,
F.
,
Osta
,
R.
, and
Muñoz
,
M. J.
,
2010
, “
Passive Nonlinear Elastic Behaviour of Skeletal Muscle: Experimental Results and Model Formulation
,”
J. Biomech.
,
43
(
2
), pp.
318
325
.10.1016/j.jbiomech.2009.08.032
22.
Shigley
,
J.
, and
Mischke
,
C.
,
1996
,
Standard Handbook of Machine Design
, 2nd ed.,
McGraw-Hill
, New York, pp.
24
36
.
23.
Adams
,
B. M.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Ebeida
,
M. S.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Geraci
,
G.
,
Hooper
,
R. W.
,
Hough
,
P. D.
,
Hu
,
K. T.
,
Jakeman
,
J. D.
,
Khalil
,
M.
,
Maupin
,
K. A.
,
Monschke
,
J. A.
,
Ridgway
,
E. M.
,
Rushdi
,
A. A.
,
Stephens
,
J. A.
,
Swiler
,
L. P.
,
Vigil
,
D. M.
,
Wildey
,
T. M.
, and
Winokur
,
J. G.
,
2014
, “
Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.11 User’s Manual
,” Sandia, Albuquerque, NM, Report No.
SAND2014-4633
.https://dakota.sandia.gov/sites/default/files/docs/6.11/Users-6.11.0.pdf
24.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press, Cambridge, UK
.
25.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comp. Meth. Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
26.
Oberkampf
,
W. L.
, and
Ferson
,
S.
,
2007
, “
Model Validation Under Both Aleatory and Epistemic Uncertainty
,” Sandia, Albuquerque, NM, Report No.
SAND2007-7163C
.https://www.osti.gov/servlets/purl/1146321
27.
Ferson
,
S.
, and
Oberkampf
,
W. L.
,
2009
, “
Validation of Imprecise Probability Models
,”
Int. J. Reliab. Saf.
,
3
(
1/2/3
), pp.
3
22
.10.1504/IJRS.2009.026832
28.
Noblett
,
K. L.
, and
Cadish
,
L. A.
,
2014
, “
Sacral Nerve Stimulation for the Treatment of Refractory Voiding and Bowel Dysfunction
,”
Am. J. Obstet. Gynecol.
,
210
(
2
), pp.
99
106
.10.1016/j.ajog.2013.07.025
29.
Mege
,
D.
,
Meurette
,
G.
,
Brochard
,
C.
,
Damon
,
H.
,
Lambrescak
,
E.
,
Faucheron
,
J.-L.
,
Wyart
,
V.
,
Lehur
,
P.-A.
,
Sielezneff
,
I.
,
Siproudhis
,
L.
,
Mion
,
F.
,
Etienney
,
I.
,
Houivet
,
E.
,
Bridoux
,
V.
, and
Leroi
,
A.-M.
,
2019
, “
Sacral Nerve Modulation for Faecal Incontinence: Influence of Age on Outcomes and Complications. A Multicentre Study
,”
Colorectal Disease
,
21
(
9
), pp.
1058
1066
.10.1111/codi.14649
30.
Dudding
,
T. C.
,
Parés
,
D.
,
Vaizey
,
C. J.
, and
Kamm
,
M. A.
,
2008
, “
Predictive Factors for Successful Sacral Nerve Stimulation in the Treatment of Faecal Incontinence: A 10-Year Cohort Analysis
,”
Colorectal Dis.
,
10
(
3
), pp.
249
256
.10.1111/j.1463-1318.2007.01319.x
You do not currently have access to this content.