Abstract

Currently available motion-preserving orthopedic implants offer many advantages but have several limitations to their use, including short device lifetime, high part count, loss of natural kinematics, and wear-induced osteolysis and implant loosening. Compliant mechanisms have been used to address some of these problems as they offer several potential advantages - namely, wear reduction, reduced part count, and the ability to achieve complex, patient-specific motion profiles. This article provides a systematic review of compliant mechanisms as orthopedic implants. Based on the PRISMA guidelines for an efficient review, this work identified fourteen implantable orthopedic devices that seek to restore anatomical motion by utilizing mechanical compliance. From reviewing these implants and their results, advantages and consequences for each are summarized. Trends were also identified in how these devices are capable of mitigating common challenges found in orthopedic design. Design considerations for the development of future compliant orthopedic implants are proposed and discussed.

References

1.
Pagé
,
M. G.
,
Katz
,
J.
,
Escobar
,
E. M. R.
,
Lutzky-Cohen
,
N.
,
Curtis
,
K.
,
Fuss
,
S.
, and
Clarke
,
H. A.
,
2015
, “
Distinguishing Problematic From Nonproblematic Postsurgical Pain: A Pain Trajectory Analysis After Total Knee Arthroplasty
,”
Pain
,
156
(
3
), pp.
460
468
.10.1097/01.j.pain.0000460327.10515.2d
2.
Dailiana
,
Z. H.
,
Papakostidou
,
I.
,
Varitimidis
,
S.
,
Liaropoulos
,
L.
,
Zintzaras
,
E.
,
Karachalios
,
T.
,
Michelinakis
,
E.
, and
Malizos
,
K. N.
,
2015
, “
Patient-Reported Quality of Life After Primary Major Joint Arthroplasty: A Prospective Comparison of Hip and Knee Arthroplasty
,”
BMC Musculoskeletal Disord.
,
16
(
1
), p.
366
.10.1186/s12891-015-0814-9
3.
Abu-Amer
,
Y.
,
Darwech
,
I.
, and
Clohisy
,
J. C.
,
2007
, “
Aseptic Loosening of Total Joint Replacements: Mechanisms Underlying Osteolysis and Potential Therapies
,”
Arthritis. Res. Ther.
,
9
(
Suppl 1
), p.
S6
.10.1186/ar2170
4.
Dumbleton
,
J. H.
,
Manley
,
M. T.
, and
Edidin
,
A. A.
,
2002
, “
A Literature Review of the Association Between Wear Rate and Osteolysis in Total Hip Arthroplasty
,”
J. Arthroplasty
,
17
(
5
), pp.
649
661
.10.1054/arth.2002.33664
5.
Hallab
,
N. J.
,
Cunningham
,
B. W.
, and
Jacobs
,
J. J.
,
2003
, “
Spinal Implant Debris-Induced Osteolysis
,”
Spine
,
28
(
20S
), pp.
S125
S138
.10.1097/00007632-200310151-00006
6.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
,
43
(
6
), pp.
638
649
.10.1109/10.495283
7.
Banks
,
S. A.
,
Markovich
,
G. D.
, and
Hodge
,
W. A.
,
1997
, “
In Vivo Kinematics of Cruciate-Retaining and-Substituting Knee Arthroplasties
,”
J. Arthroplasty
,
12
(
3
), pp.
297
304
.10.1016/S0883-5403(97)90026-7
8.
Bellemans
,
J.
,
Banks
,
S.
,
Victor
,
J.
,
Vandenneucker
,
H.
, and
Moemans
,
A.
,
2002
, “
Fluoroscopic Analysis of the Kinematics of Deep Flexion in Total Knee Arthroplasty: Influence of Posterior Condylar Offset
,”
J. Bone Jt. Surg. Br. Vol.
,
84-B
(
1
), pp.
50
53
.10.1302/0301-620X.84B1.0840050
9.
Beevers
,
D.
, and
Seedhom
,
B.
,
1993
, “
Metacarpophalangeal Joint Prostheses: A Review of Past and Current Designs
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
207
(
4
), pp.
195
206
.10.1243/PIME_PROC_1993_207_297_02
10.
Balasundaram
,
G.
, and
Webster
,
T. J.
,
2007
, “
An Overview of Nano-Polymers for Orthopedic Applications
,”
Macromol. Biosci.
,
7
(
5
), pp.
635
642
.10.1002/mabi.200600270
11.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
12.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
,
2011
, “
A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041008
.10.1115/1.4004896
13.
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., and Moher, D., 2009, “The Prisma Statement for Reporting Systematic Reviews and Meta-Analyses of Studies that Evaluate Healthcare Interventions: Explanation and Elaboration,”
BMJ
, 339, p. b2700.10.1136/bmj.b2700
14.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
1997
,
Mechanism Design: Analysis and Synthesis
,
1
,
Prentice Hall
, Hoboken, NJ.
15.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2011
,
Theory of Machines and Mechanisms
,
1
,
Oxford University Press
,
New York
.
16.
Barrey
,
C. Y.
,
Ponnappan
,
R. K.
,
Song
,
J.
, and
Vaccaro
,
A. R.
,
2008
, “
Biomechanical Evaluation of Pedicle Screw-Based Dynamic Stabilization Devices for the Lumbar Spine: A Systematic Review
,”
Int. J. Spine Surg.
,
2
(
4
), pp.
159
170
.10.1016/SASJ-2008-0010-LR
17.
Bonaldi
,
G.
,
Brembilla
,
C.
, and
Cianfoni
,
A.
,
2015
, “
Minimally-Invasive Posterior Lumbar Stabilization for Degenerative Low Back Pain and Sciatica. A Review
,”
Eur. J. Radiol.
,
84
(
5
), pp.
789
798
.10.1016/j.ejrad.2014.04.012
18.
Capone
,
R. A.
,
1995
, “
The Titanium Grommet in Flexible Implant Arthroplasty of the Radiocarpal Joint: A Long-Term Review of 44 Cases
,”
Plast. Reconstr. Surg.
,
96
(
3
), pp.
667
672
.10.1097/00006534-199509000-00020
19.
Chan
,
K.
,
Ayeni
,
O.
,
McKnight
,
L.
,
Ignacy
,
T. A.
,
Farrokhyar
,
F.
, and
Thoma
,
A.
,
2013
, “
Pyrocarbon Versus Silicone Proximal Interphalangeal Joint Arthroplasty: A Systematic Review
,”
Plast. Reconstr. Surg.
,
131
(
1
), pp.
114
124
.10.1097/PRS.0b013e3182729f27
20.
Corrigan
,
G.
, and
Kanat
,
I. O.
,
1989
, “
Modification of the Total First Metatarsophalangeal Joint Implant Arthroplasty
,”
J. Foot Surg.
,
28
(
4
), pp.
295
300.
https://pubmed.ncbi.nlm.nih.gov/2794361/
21.
Costi
,
J. J.
,
Freeman
,
B. J.
, and
Elliott
,
D. M.
,
2011
, “
Intervertebral Disc Properties: Challenges for Biodevices
,”
Expert Rev. Med. Devices
,
8
(
3
), pp.
357
376
.10.1586/erd.11.1
22.
Cunningham
,
B. W.
,
2004
, “
Basic Scientific Considerations in Total Disc Arthroplasty
,”
Spine J.
,
4
(
6 Suppl
.), pp.
S219
S230
.10.1016/j.spinee.2004.07.015
23.
Dodgen
,
E.
,
Stratton
,
E.
,
Bowden
,
A.
, and
Howell
,
L.
,
2012
, “
Spinal Implant Development, Modeling, and Testing to Achieve Customizable and Nonlinear Stiffness
,”
J. Med. Devices-Trans. ASME
,
6
(
2
), p.
8
.10.1115/1.4006543
24.
Dodgen
,
E. R.
,
Howell
,
L.
, and
Bowden
,
A.
,
2011
, “
Spinal Implant With Adjustable and Nonlinear Stiffness
,”
ASME
Paper No. DETC2011-47913.10.1115/DETC2011-47913
25.
Fieschi
,
S.
,
Saffarini
,
M.
,
Manzi
,
L.
, and
Fieschi
,
A.
,
2017
, “
Mid-Term Outcomes of First Metatarsophalangeal Arthroplasty Using the Primus FGT Double-Stemmed Silicone Implants
,”
Foot Ankle Surg.
,
23
(
3
), pp.
142
147
.10.1016/j.fas.2016.11.009
26.
Gelalis
,
I. D.
,
Papadopoulos
,
D. V.
,
Giannoulis
,
D. K.
,
Tsantes
,
A. G.
, and
Korompilias
,
A. V.
,
2018
, “
Spinal Motion Preservation Surgery: Indications and Applications
,”
Eur. J. Orthop. Surg. Traumatol.
,
28
(
3
), pp.
335
342
.10.1007/s00590-017-2052-3
27.
Grob
,
D.
,
2009
, Bandscheibenprothese der lendenwirbelsäule, jan.
28.
Guigui
,
P.
, and
Ferrero
,
E.
,
2017
, “
Surgical Treatment of Degenerative Spondylolisthesis
,”
Orthop. Traumatol. Surg. Res.
,
103
(
1Suppl
.), pp.
S11
S20
.10.1016/j.otsr.2016.06.022
29.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2008
, “
A Flexure-Based bi-Axial Contact-Aided Compliant Mechanism for Spinal Arthroplasty
,”
ASME
Paper No. DETC2008-50121.10.1115/DETC2008-50121
30.
Hong
,
S. W.
,
Yoon
,
J.
,
Kim
,
Y. J.
, and
Gong
,
H. S.
,
2019
, “
Novel Implant Design of the Proximal Interphalangeal Joint Using an Optimized Rolling Contact Joint Mechanism
,”
J. Orthop. Surg. Res.
,
14
(
1
), p.
13
.10.1186/s13018-019-1234-6
31.
Khoueir
,
P.
,
Kim
,
K. A.
, and
Wang
,
M. Y.
,
2007
, “
Classification of Posterior Dynamic Stabilization Devices
,”
Neurosurg. Focus
,
22
(
1
), pp.
1
8
.10.3171/foc.2007.22.1.3
32.
Main
,
J. A.
,
Wells
,
M. E.
,
Spengler
,
D. M.
,
Strauss
,
A. M.
, and
Keller
,
T. S.
,
1989
, “
Flexible Device for Vertebral Body Replacement
,”
J. Biomed. Eng.
,
11
(
2
), pp.
113
117
.10.1016/0141-5425(89)90119-2
33.
Möller
,
K.
,
Sollerman
,
C.
,
Geijer
,
M.
, and
Brånemark
,
P. I.
,
1999
, “
Osseointegrated Silicone Implants. 18 Patients With 57 MCP Joints Followed for 2 Years
,”
Acta Orthop. Scand.
,
70
(
2
), pp.
109
115
.10.3109/17453679909011245
34.
Namdari
,
S.
, and
Weiss
,
A. P. C.
,
2009
, “
Anatomically Neutral Silicone Small Joint Arthroplasty for Osteoarthritis
,”
J. Hand Surg.-Am. Vol.
,
34
(
2
), pp.
292
300
.10.1016/j.jhsa.2008.11.005
35.
O'Donovan
,
T. M.
,
Terrono
,
A. L.
, and
Millender
,
L. H.
,
1991
, “
Silicone Rubber Arthroplasty of the Wrist
,”
Semin. Arthroplasty
,
2
(
2
), pp.
85
90
.https://pubmed.ncbi.nlm.nih.gov/10149607/
36.
Rittmeister
,
M.
,
Porsch
,
M.
,
Starker
,
M.
, and
Kerschbaumer
,
F.
,
1999
, “
Metacarpophalangeal Joint Arthroplasty in Rheumatoid Arthritis: Results of Swanson Implants and Digital Joint Operative Arthroplasty
,”
Arch. Orthop. Trauma Surg.
,
119
(
3–4
), pp.
190
194
.10.1007/s004020050388
37.
Shepherd
,
D. E.
, and
Johnstone
,
A. J.
,
2005
, “
A New Design Concept for Wrist Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
219
(
1
), pp.
43
52
.10.1243/095441105X9219
38.
Sperati
,
G.
,
2014
, “
Metatarsophalangeal Joint Arthroplasty With Implantation of Osteomed Interflex IPG System: Our Experience
,”
Acta Biomed.
,
85
(
Suppl 2
), pp.
118
120
.https://pubmed.ncbi.nlm.nih.gov/25409731/
39.
Stratton
,
E.
,
Howell
,
L.
, and
Bowden
,
A.
,
2010
, “
Force–Displacement Model of the Flexsure Spinal Implant
,”
ASME
Paper No. DETC2010-28476.10.1115/DETC2010-28476
40.
Swanson
,
A.
,
1973
, “
Flexible Implant Arthroplasty for Arthritic Disabilities of the Radiocarpal Joint. a Silicone Rubber Intramedullary Stemmed Flexible Hinge Implant for the Wrist Joint
,”
Orthop. Clin. North Am.
,
4
(
2
), pp.
383
394
.10.1016/S0030-5898(20)30800-2
41.
Swanson
,
A. B.
,
1976
, “
Flexible Implant Arthroplasty in the Hand
,”
Clin. Plast. Surg.
,
3
(
1
), pp.
141
157
.10.1016/S0094-1298(20)30254-6
42.
Swanson
,
A. B.
, and
de Groot Swanson
,
G.
,
1983
, “
Implant Arthroplasty for Metacarpal and Interphalangeal Joints in Rheumatoid Arthritis
,”
Ann. Acad Med. Singap.
,
12
(
2
), pp.
285
299
.https://pubmed.ncbi.nlm.nih.gov/6614852/
43.
Swanson
,
A. B.
, and
de Groot Swanson
,
G.
,
1997
, “
Use of Grommets for Flexible Hinge Implant Arthroplasty of the Great Toe
,”
Clin. Orthop. Relat. Res.
, 340, pp.
87
94
. 10.1097/00003086-199707000-00012
44.
Swanson
,
A. B.
, and
Swanson
,
G.
,
1991
, “
Flexible Implant Arthroplasty of the Radiocarpal Joint
,”
Semin Arthroplasty
,
2
(
2
), pp.
78
84
.https://pubmed.ncbi.nlm.nih.gov/10149606/
45.
Ter Keurs
,
E. W.
,
Wassink
,
S.
,
Burger
,
B. J.
, and
Hubach
,
P. C.
,
2011
, “
First Metatarsophalangeal Joint Replacement: Long-Term Results of a Double Stemmed Flexible Silicone Prosthesis
,”
Foot Ankle Surg
,
17
(
4
), pp.
224
227
.10.1016/j.fas.2010.08.001
46.
Tyagi
,
V.
,
Strom
,
R.
,
Tanweer
,
O.
, and
Frempong-Boadu
,
A. K.
,
2018
, “
Posterior Dynamic Stabilization of the Lumbar Spine: Review of Biomechanical and Clinical Studies
,”
Bull. NYU Hosp. Jt. Dis.
,
76
(
2
), pp.
100
104
.https://pubmed.ncbi.nlm.nih.gov/29799368/
47.
Yeoman
,
M.
,
Johnstone
,
A.
,
Karuppiah
,
S. V.
,
Targell
,
J.
, and
Shepherd
,
D. E.
,
2009
, “
Investigating the Potential Advantages of a New Design Metacarpophalangeal Joint
,”
Proc. Inst. Mech. Eng. H
,
223
(
7
), pp.
839
847
.10.1243/09544119JEIM569
48.
Zhu
,
A. F.
,
Rahgozar
,
P.
, and
Chung
,
K. C.
,
2018
, “
Advances in Proximal Interphalangeal Joint Arthroplasty Biomechanics and Biomaterials
,”
Hand Clinics
,
34
(
2
), pp.
185
194
.10.1016/j.hcl.2017.12.008
49.
Dodgen
,
E.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2016
, “
Serpentine Spinal Stability Device
,” United States Patent Full-Text and Images Database, 9333008.
50.
Balasubramanian
,
R.
,
Homayouni
,
T.
, and
Valero-Cuevas
,
F.
,
2018
, “
Implanted Passive Engineering Mechanisms and Methods for their use and Manufacture
,” United States Patent Full-Text and Images Database, 9925035.
51.
Swanson
,
A.
,
1966
, “
A Flexible Implant for Replacement of Arthritic or Destroyed Joints in the Hand
,”
NY Univ Inter-Clin Inform Bull
,
6
, pp.
16
19
.
52.
Swanson
,
A. B.
,
1972
, “
Implant Arthroplasty for the Great Toe
,”
Clinical Orthopaedics Relat. Res. (1976-2007)
,
85
, pp.
75
81
.10.1097/00003086-197206000-00017
53.
Murray
,
P. M.
,
2003
, “
New-Generation Implant Arthroplasties of the Finger Joints
,”
JAAOS-J. Am. Acad. Orthop. Surg.
,
11
(
5
), pp.
295
301
.10.5435/00124635-200309000-00002
54.
Vanore
,
J.
,
1992
, “
Implant Arthroplasty at a Crossroads
,”
J. Am. Podiatry Assoc.
,
82
, pp.
193
207
.http://www.podiatryinstitute.com/pdfs/Update_1992/1992_37.pdf
55.
Lawrence
,
B. R.
,
Lepow
,
G. M.
, and
Eric Thuen
,
D.
,
2017
, “
Current Concepts With First Mpj Silicone Implants
,”
Podiatry Today
,
30
(
3
), pp.
28
32
.https://www.hmpgloballearningnetwork.com/site/podiatry/current-concepts-first-mpj-silicone-implants
56.
Christie
,
A. J.
,
Pierret
,
G.
, and
Levitan
,
J.
,
1989
, “
Silicone Synovitis
,”
Semi. Arthritis Rheum.
,
19
(
3
), pp.
166
171
.10.1016/0049-0172(89)90029-2
57.
Smith
,
R. J.
,
Atkinson
,
R. E.
, and
Jupiter
,
J. B.
,
1985
, “
Silicone Synovitis of the Wrist
,”
J. Hand Surg.
,
10
(
1
), pp.
47
60
.10.1016/S0363-5023(85)80247-1
58.
Jolly
,
S. L.
,
Ferlic
,
D. C.
,
Clayton
,
M. L.
,
Dennis
,
D. A.
, and
Stringer
,
E.
,
1992
, “
Swanson Silicone Arthroplasty of the Wrist in Rheumatoid Arthritis: A Long-Term Follow-Up
,”
J. Hand Surg.
,
17
(
1
), pp.
142
149
.10.1016/0363-5023(92)90130-H
59.
Lanzetta
,
M.
,
Herbert
,
T.
, and
Conolly
,
W.
,
1994
, “
Silicone Synovitis: A Perspective
,”
J. Hand Surg.
,
19
(
4
), pp.
479
484
.10.1016/0266-7681(94)90213-5
60.
Shepherd
,
D. E. T.
,
2002
, “
Risk Analysis for a Radio-Carpal Joint Replacement
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
216
(
1
), pp.
23
29
.10.1243/0954411021536243
61.
Gillespie
,
T. E.
,
Flatt
,
A. E.
,
Youm
,
Y.
, and
Sprague
,
B. L.
,
1979
, “
Biomechanical Evaluation of Metacarpophalangeal Joint Prosthesis Designs
,”
J. Hand Surg.
,
4
(
6
), pp.
508
521
.10.1016/S0363-5023(79)80002-7
62.
Fatti
,
J. F.
,
Palmer
,
A. K.
, and
Mosher
,
J. F.
,
1986
, “
The Long-Term Results of Swanson Silicone Rubber Interpositional Wrist Arthroplasty
,”
J. Hand Surg.
,
11
(
2
), pp.
166
175
.10.1016/S0363-5023(86)80046-6
63.
Brase
,
D. W.
, and
Millender
,
L. H.
,
1986
, “
Failure of Silicone Rubber Wrist Arthroplasty in Rheumatoid Arthritis
,”
J. Hand Surg.
,
11
(
2
), pp.
175
183
.10.1016/S0363-5023(86)80047-8
64.
Goodman
,
M. J.
,
Millender
,
L. H.
,
Nalebuff
,
E. A.
, and
Philips
,
C. A.
,
1980
, “
Arthroplasty of the Rheumatoid Wrist With Silicone Rubber: An Early Evaluation
,”
J. Hand Surg.
,
5
(
2
), pp.
114
121
.10.1016/S0363-5023(80)80141-9
65.
Comstock
,
C. P.
,
Louis
,
D. S.
, and
Eckenrode
,
J. F.
,
1988
, “
Silicone Wrist Implant: Long-Term Follow-Up Study
,”
J. Hand Surg.
,
13
(
2
), pp.
201
205
.10.1016/S0363-5023(88)80048-0
66.
Cavaliere
,
C. M.
, and
Chung
,
K. C.
,
2008
, “
A Systematic Review of Total Wrist Arthroplasty Compared With Total Wrist Arthrodesis for Rheumatoid Arthritis
,”
Plast. Reconst. Surg.
,
122
(
3
), pp.
813
825
.10.1097/PRS.0b013e318180ece3
67.
Costi
,
J.
,
Krishnan
,
J.
, and
Pearcy
,
M.
,
1998
, “
Total Wrist Arthroplasty: A Quantitative Review of the Last 30 Years
,”
J. Rheumatol.
,
25
(
3
), pp.
451
8
.https://pubmed.ncbi.nlm.nih.gov/9517762/
68.
Royo
,
J.
,
1992
, “
Fatigue Testing of Rubber Materials and Articles
,”
Polym. Test.
,
11
(
5
), pp.
325
344
.10.1016/0142-9418(92)90002-S
69.
Gunatillake
,
P. A.
,
Meijs
,
G. F.
,
Mccarthy
,
S. J.
, and
Adhikari
,
R.
,
2000
, “
Poly (Dimethylsiloxane)/Poly (Hexamethylene Oxide) Mixed Macrodiol Based Polyurethane Elastomers. i. synthesis and Properties
,”
J. Appl. Polym. Sci.
,
76
(
14
), pp.
2026
2040
.10.1002/(SICI)1097-4628(20000628)76:14<2026::AID-APP5>3.0.CO;2-X
70.
Martin
,
D. J.
,
Warren
,
L. A. P.
,
Gunatillake
,
P. A.
,
McCarthy
,
S. J.
,
Meijs
,
G. F.
, and
Schindhelm
,
K.
,
2000
, “
Polydimethylsiloxane/Polyether-Mixed Macrodiol-Based Polyurethane Elastomers: Biostability
,”
Biomaterials
,
21
(
10
), pp.
1021
1029
.10.1016/S0142-9612(99)00271-9
71.
Shepherd
,
D. E. T.
, and
Johnstone
,
A.
,
2002
, “
Design Considerations for a Wrist Implant
,”
Med. Eng. Phys.
,
24
(
10
), pp.
641
650
.10.1016/S1350-4533(02)00148-0
72.
Boone
,
D. C.
, and
Azen
,
S. P.
,
1979
, “
Normal Range of Motion of Joints in Male Subjects
,”
JBJS
,
61
(
5
), pp.
756
759
.10.2106/00004623-197961050-00017
73.
Hayashi
,
H.
,
Shimizu
,
H.
,
Okumura
,
S.
, and
Miwa
,
K.
,
2014
, “
Necessary Metacarpophalangeal Joints Range of Motion to Maintain Hand Function
,”
Hong Kong J. Occup. Ther.
,
24
(
2
), pp.
51
55
.10.1016/j.hkjot.2014.10.001
74.
Nelson
,
D.
,
1997
, “
Functional Wrist Motion
,”
Hand Clinics
,
13
(
1
), pp.
83
92
.10.1016/S0749-0712(21)00082-2
75.
Gazzeri
,
R.
,
Galarza
,
M.
,
Neroni
,
M.
,
Fiore
,
C.
,
Faiola
,
A.
,
Puzzilli
,
F.
,
Callovini
,
G.
, and
Alfieri
,
A.
,
2015
, “
Failure Rates and Complications of Interspinous Process Decompression Devices: A European Multicenter Study
,”
Neurosurg. Focus
,
39
(
4
), p.
E14
.10.3171/2015.7.FOCUS15244
76.
Tsai
,
K.-J.
,
Murakami
,
H.
,
Lowery
,
G. L.
, and
Hutton
,
W. C.
,
2006
, “
A Biomechanical Evaluation of an Interspinous Device (Coflex Device) Used to Stabilise the Lumbar Spine
,”
Paradigm Spine J.
,
1
, p.
14
.https://pubmed.ncbi.nlm.nih.gov/17087886/
77.
Reeks
,
J.
, and
Liang
,
H.
,
2015
, “
Materials and Their Failure Mechanisms in Total Disc Replacement
,”
Lubricants
,
3
(
2
), pp.
346
364
.10.3390/lubricants3020346
78.
Eastwood
,
K. W.
,
Swarup
,
A.
,
Francis
,
P.
,
Alvara
,
A. N.
,
Chen
,
H.
,
Looi
,
T.
,
Naguib
,
H. E.
, and
Drake
,
J. M.
,
2020
, “
A Steerable Neuroendoscopic Instrument Using Compliant Contact-Aided Joints and Monolithic Articulation
,”
ASME J. Med. Dev.
,
14
(
2
), p. 025002.10.1115/1.4045934
79.
Pang
,
E. Q.
, and
Yao
,
J.
,
2018
, “
Anatomy and Biomechanics of the Finger Proximal Interphalangeal Joint
,”
Hand Clinics
,
34
(
2
), pp.
121
126
.10.1016/j.hcl.2017.12.002
80.
Hillberry
,
B. M.
, and
Hall
, Jr,
A. S.
,
1976
, “
Rolling contact prosthetic knee joint
,” United States Patent Full-Text and Images Database, 3945053.
81.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
,
2012
, “
A Compliant-Mechanism Approach to Achieving Specific Quality of Motion in a Lumbar Total Disc Replacement
,”
Int. J. Spine Surg.
,
6
(
1
), pp.
78
86
.10.1016/j.ijsp.2012.02.002
82.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (Let) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
.10.1016/j.mechmachtheory.2009.05.015
83.
Peterson
,
J. M.
,
Chlebek
,
C.
,
Clough
,
A. M.
,
Wells
,
A. K.
, and
Ledet
,
E. H.
,
2018
, “
Stiffness Matters: Part Ithe Effects of Plate Stiffness on the Biomechanics of Acdf In Vitro
,”
Spine
,
43
(
18
), pp.
E1061
E1068
.10.1097/BRS.0000000000002643
84.
Bowden
,
A.
,
Howell
,
L. L.
,
Nelson
,
T.
, and
Stephens
,
T.
,
2017
, “
Inverted Serpentine Spinal Stability Device and Associated Methods
,” United States Patent Full-Text and Images Database, 9642651.
85.
ASTM F1717-21
, Standard,
2021
,
Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model
,
ASTM International
,
West Conshohocken, PA
.
86.
Chandrasekaran
,
K.
,
Somayaji
,
A.
, and
Thondiyath
,
A.
,
2021
, “
A Novel Design for a Compliant Mechanism Based Variable Stiffness Grasper Through Structure Modulation
,”
ASME J. Med. Devices
,
15
(
1
), p.
014501
.10.1115/1.4049309
87.
Lee
,
H. C.
, and
Cipra
,
R.
,
2020
, “
Design of a Novel Locking Ratcheting Mechanism for a Body-Powered Underactuated Hand
,”
ASME J. Med. Devices
,
14
(
1
), p. 011101.10.1115/1.4045834
88.
Biddis
,
E. A.
,
Bogoch
,
E. R.
, and
Meguid
,
S. A.
,
2004
, “
Three-Dimensional Finite Element Analysis of Prosthetic Finger Joint Implants
,”
Int. J. Mech. Mater. Des.
,
1
(
4
), pp.
317
328
.10.1007/s10999-005-3308-3
89.
Weiss, A.-P
,
C.
,
Moore
,
D. C.
,
Infantolino
,
C.
,
Crisco
,
J. J.
,
Akelman
,
E.
, and
McGovern
,
R. D.
,
2004
, “
Metacarpophalangeal Joint Mechanics After 3 Different Silicone Arthroplasties
,”
J. Hand Surg.
,
29
(
5
), pp.
796
803
.10.1016/j.jhsa.2004.04.023
90.
Hussein
,
A.
,
Stranart
,
J.
,
Meguid
,
S.
, and
Bogoch
,
E.
,
2011
, “
Biomechanical Validation of Finite Element Models for Two Silicone Metacarpophalangeal Joint Implants
,”
ASME J. Biomech. Eng.
,
133
(
2
), p. 024501.10.1115/1.4003311
91.
Kadir
,
M. R. A.
,
Kamsah
,
N.
, and
Aminullah
,
M.
,
2008
, “
Finite Element Study of Metacarpophalangeal Joint Silicone Implants
,”
4th Kuala Lumpur International Conference on Biomedical Engineering 2008
, Kuala Lumpur, Malaysia, June 25–28, Vol.
21
, pp.
420
423
.10.1007/978-3-540-69139-6_107
92.
Delaney
,
R.
,
Trail
,
I.
, and
Nuttall
,
D.
,
2005
, “
A Comparative Study of Outcome Between the Neuflex and Swanson Metacarpophalangeal Joint Replacements
,”
J. Hand Surg.
,
30
(
1
), pp.
3
7
.10.1016/J.JHSB.2004.10.013
93.
Joyce
,
T.
, and
Unsworth
,
A.
,
2000
, “
The Design of a Finger Wear Simulator and Preliminary Results
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
,
214
(
5
), pp.
519
526
.10.1243/0954411001535552
94.
Wang
,
L.
,
Isaac
,
G.
,
Wilcox
,
R.
,
Jones
,
A.
, and
Thompson
,
J.
,
2019
, “
Finite Element Analysis of Polyethylene Wear in Total Hip Replacement: A Literature Review
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
233
(
11
), pp.
1067
1088
.10.1177/0954411919872630
95.
Dai
,
Y.
,
Kusuma
,
S.
,
Greene
,
A. T.
,
Fan
,
W.
,
Jung
,
A.
,
Hamad
,
C.
,
Bras
,
G.
, and
Angibaud
,
L.
,
2021
, “
Application-Specific Learning Curve With a Modern Computer-Assisted Orthopedic Surgery System for Joint Arthroplasty
,”
ASME J. Med. Devices
,
15
(
1
), p.
014504
10.1115/1.4049545.
96.
Lundborg
,
G.
,
Brånemark
,
P.-I.
, and
Carlsson
,
I.
,
1993
, “
Metacarpophalangeal Joint Arthroplasty Based on the Osseointegration Concept
,”
J. Hand Surg.
,
18
(
6
), pp.
693
703
.10.1016/0266-7681(93)90224-4
97.
Möller
,
K.
,
Geijer
,
M.
,
Sollerman
,
C.
, and
Lundborg
,
G.
,
2004
, “
Radiographic Evaluation of Osseointegration and Loosening of Titanium Implants in the Mcp and Pip Joints
,”
J. Hand Surgery
,
29
(
1
), pp.
32
38
.10.1016/j.jhsa.2003.10.001
98.
Seebach
,
M.
,
Fritz
,
C.
,
Kerschreiter
,
J.
, and
Zaeh
,
M. F.
,
2020
, “
Shape Accuracy and Surface Quality of Additively Manufactured, Optimized, Patient-Specific Bone Plates
,”
ASME J. Med. Dev.
,
15
(
2
), p.
021004
.10.1115/1.4049193
99.
Walker
,
B. J.
,
Cox
,
B. L.
,
Cikla
,
U.
,
de Bellefon
,
G. M.
,
Rankouhi
,
B.
,
Steiner
,
L. J.
,
Mahadumrongkul
,
P.
,
Petry
,
G.
,
Thevamaran
,
M.
,
Swader
,
R.
,
Kuo
,
J. S.
,
Suresh
,
K.
,
Thoma
,
D.
, and
Eliceiri
,
K. W.
,
2019
, “
An Investigation Into the Challenges of Using Metal Additive Manufacturing for the Production of Patient-Specific Aneurysm Clips
,”
ASME J. Med. Dev.
,
13
(
3
), p. 031009.10.1115/1.4043651
You do not currently have access to this content.