Abstract

Stability of a dental implant reflects quality of osseointegration between the implant and its surrounding bone. While many methods have been proposed to characterize implant stability, angular stiffness at the neck of the implant has been proven to be a rigorous and accurate measure. Nevertheless, fast and reliable measurements of the angular stiffness in a clinical environment are not yet available. This article is to demonstrate a novel stability diagnostic device that can measure the angular stiffness accurately in clinical environments. The device consists of a sensing unit, a controller unit, and a mobile app. In the sensing unit, a coupler attaches a buzzer motor and a tiny accelerometer to an abutment of an implant, whose angular stiffness is to be measured. The buzzer vibrates at a frequency below the resonance frequency of the implant–bone–abutment system. Meanwhile, the accelerometer measures the abutment's vibration. The controller unit powers the buzzer, reads the accelerometer data, and transmits the data to the mobile app. The mobile app postprocesses the data and extracts the angular stiffness through use of a finite element model and a nonlinear regression algorithm. The extracted angular stiffness is compared with a calibrated angular stiffness, which is obtained independently via a force hammer and a laser Doppler vibrometer. The comparison shows reasonable agreement, with the difference being in the range of 4–20%.

References

1.
Chen
,
M. H. M.
,
Lyons
,
K.
,
Tawse-Smith
,
A.
, and
Ma
,
S.
,
2019
, “
Resonance Frequency Analysis in Assessing Implant Stability: A Retrospective Analysis
,”
Int. J. Prosthodont.
,
32
(
4
), pp.
317
326
.10.11607/ijp.6057
2.
Chen
,
M. H. M.
,
Lyons
,
K.
,
Tawse-Smith
,
A.
, and
Ma
,
S.
,
2018
, “
Clinical Significance of the Use of Resonance Frequency Analysis in Assessing Implant Stability: A Systematic Review
,”
Int. J. Prosthodont.
,
32
(
1
), pp.
51
58
.10.11607/ijp.6048
3.
Andersson
,
P.
,
Pagliani
,
L.
,
Verrocchi
,
D.
,
Volpe
,
S.
,
Sahlin
,
H.
, and
Sennerby
,
L.
,
2019
, “
Factors Influencing Resonance Frequency Analysis (RFA) Measurements and 5-Year Survival of Neoss Dental Implants
,”
Int. J. Dent.
,
2019
, pp.
1
9
.10.1155/2019/3209872
4.
Benedetti
,
A.
,
Kirkov
,
A.
,
Iliev
,
A.
,
Stamatoski
,
A.
,
Baftijari
,
F.
,
Deliverska
,
E. G.
, and
Gjorgievska
,
E.
,
2018
, “
Assessment of Primary and Secondary Implant Stability by Resonance Frequency Analysis in Anterior and Posterior Segments of Maxillary Edentulous Ridges
,”
J. IMAB
,
24
(
2
), pp.
2058
2064
.10.5272/jimab.2018242.2058
5.
Yao
,
C. J.
,
Ma
,
L.
, and
Mattheos
,
N.
,
2017
, “
Can Resonance Frequency Analysis Detect Narrow Marginal Bone Defects Around Dental Implants? An Ex Vivo Animal Pilot Study
,”
Aust. Dent. J.
,
62
(
4
), pp.
433
439
.10.1111/adj.12536
6.
Kumar
,
V. V.
,
Kumar
,
U.
,
Pillai
,
V.
,
Ponnusamy
,
V.
,
Al-Nawas
,
B.
, and
Kuriakose
,
M. A.
,
2017
, “
Implant Stability and Bone Characteristics in Free Fibula Flaps Used for Jaw Reconstruction: A Prospective Cohort Study
,”
Int. J. Oral Maxillofac. Implants
,
32
(
5
), pp.
1145
1152
.10.11607/jomi.5359
7.
Fu
,
M. W.
,
Fu
,
E.
,
Lin
,
F. G.
,
Chang
,
W. J.
,
Hsieh
,
Y. D.
, and
Shen
,
E. C.
,
2017
, “
Correlation Between Resonance Frequency Analysis and Bone Quality Assessments at Dental Implant Recipient Sites
,”
Int. J. Oral Maxillofac. Implants
,
32
(
1
), pp.
180
187
.10.11607/jomi.4684
8.
Monje
,
A.
,
Ortega-Oller
,
I.
,
Galindo-Moreno
,
P.
,
Catena
,
A.
,
Monje
,
F.
,
O'Valle
,
F.
,
Suarez
,
F.
, and
Wang
,
H. L.
,
2014
, “
Sensitivity of Resonance Frequency Analysis for Detecting Early Implant Failure: A Case-Control Study
,”
Int. J. Oral Maxillofac. Implants
,
29
(
2
), pp.
456
461
.10.11607/jomi.3357
9.
Kim
,
S. J.
,
Ribeiro
,
A. L. V. L.
,
Atlas
,
A. M.
,
Saleh
,
N.
,
Royal
,
J.
,
Radvar
,
M.
, and
Korostoff
,
J.
,
2015
, “
Resonance Frequency Analysis as a Predictor of Early Implant Failure in the Partially Edentulous Posterior Maxilla Following Immediate Nonfunctional Loading or Delayed Loading With Single Unit Restorations
,”
Clin. Oral Impl. Res.
,
26
(
2
), pp.
183
190
.10.1111/clr.12310
10.
Manresa
,
C.
,
Bosch
,
M.
, and
Echeverría
,
J. J.
,
2014
, “
The Comparison Between Implant Stability Quotient and Bone-Implant Contact Revisited: An Experiment in Beagle Dog
,”
Clin. Oral Impl. Res.
,
25
(
11
), pp.
1213
1221
.10.1111/clr.12256
11.
Vayron
,
R.
,
Nguyen
,
V. H.
,
Lecuelle
,
B.
, and
Haiat
,
G.
,
2018
, “
Evaluation of Dental Implant Stability in Bone Phantoms: Comparison Between a Quantitative Ultrasound Technique and Resonance Frequency Analysis
,”
Clin. Implant Dent. Relat. Res.
,
20
(
4
), pp.
470
478
.10.1111/cid.12622
12.
Vayron
,
R.
,
Nguyen
,
V. H.
,
Lecuelle
,
B.
,
Lomami
,
H. A.
,
Meningaud
,
J. P.
,
Bosc
,
R.
, and
Haiat
,
G.
,
2018
, “
Comparison of Resonance Frequency Analysis and of Quantitative Ultrasound to Assess Dental Implant Osseointegration
,”
Sensors
,
18
(
5
), p.
1397
.10.3390/s18051397
13.
Lages
,
F. S.
,
Douglas-de Oliveira
,
D. W.
, and
Costa
,
F. O.
,
2018
, “
Relationship Between Implant Stability Measurements Obtained by Insertion Torque and Resonance Frequency Analysis: A Systematic Review
,”
Clin. Implant Dent. Relat. Res.
,
20
(
1
), pp.
26
33
.10.1111/cid.12565
14.
Liu
,
Y.
,
Sorensen
,
J. A.
, and
Shen
,
I. Y.
,
2021
, “
Challenges of Using Resonance Frequency Analysis to Identify Stability of a Dental Implant Placed in Mandible
,”
Int. J. Oral Maxillofac. Implants
,
36
(
2
), pp.
e7
e21
.10.11607/jomi.8579
15.
Westover
,
L.
,
Faulkner
,
G.
,
Hodgetts
,
W.
, and
Raboud
,
D.
,
2016
, “
Advanced System for Implant Stability Testing (ASIST)
,”
J. Biomech.
,
49
(
15
), pp.
3651
3659
.10.1016/j.jbiomech.2016.09.043
16.
Tang
,
Y. L.
,
Li
,
B.
,
Jin
,
W.
, and
Li
,
D. H.
,
2015
, “
Torsional Resonance Frequency Analysis: A Novel Method for Assessment of Dental Implant Stability
,”
Clin. Oral Implants Res.
,
26
(
6
), pp.
615
622
.10.1111/clr.12350
17.
Lukas
,
D.
, and
Schulte
,
W.
,
1990
, “
Periotest–A Dynamic Procedure for the Diagnosis of the Human Periodontium
,”
Clin. Phys. Physiol. Meas.
,
11
(
1
), pp.
65
75
.10.1088/0143-0815/11/1/006
18.
Winkler
,
S.
,
Morris
,
H. F.
, and
Spray
,
J. R.
,
2001
, “
Stability of Implants and Natural Teeth as Determined by the Periotest Over 60 Months of Function
,”
J. Oral Implantol.
,
27
(
4
), pp.
198
203
.10.1563/1548-1336(2001)027<0198:SOIANT>2.3.CO;2
19.
Swain
,
R.
,
Faulkner
,
G.
,
Raboud
,
D.
, and
Wolfaardt
,
J.
,
2008
, “
A Dynamic Analytical Model for Impact Evaluation of Percutaneous Implants
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
51013
.10.1115/1.2970061
20.
Zhou
,
Y.
,
Gong
,
C.
,
Hossaini-Zadeh
,
M.
, and
Du
,
J.
,
2020
, “
3D Full-Field Strain in Bone-Implant and Bone-Tooth Constructs and Their Morphological Influential Factors
,”
J. Mech. Behav. Biomed.
,
110
, p.
103858
.10.1016/j.jmbbm.2020.103858
21.
Khouja
,
N.
,
Tai
,
W. C.
,
Shen
,
I. Y.
, and
Sorensen
,
J. A.
,
2019
, “
A Critique of Resonance Frequency Analysis and a Novel Method for Quantifying Dental Implant Stability In Vitro
,”
Int. J. Oral Maxillofac. Implants
,
34
(
3
), pp.
595
603
.10.11607/jomi.7173
You do not currently have access to this content.