Abstract

Catheter surgery is a minimally invasive treatment in which visual information is limited to a two-dimensional image generated by an X-ray camera. This results in the possibility that stress applied by the catheter onto a blood vessel wall damages the vessel. Doctors must therefore be skillful at catheter surgery. We proposed a catheter surgery simulator that visualizes the stress applied to the blood vessel wall using photoelasticity. The manufacture of this simulator requires creating blood vessel mimics that reproduce the physical properties of blood vessel tissue using photoelasticity. This study investigated the mechanical and photoelastic properties of gel materials and selected a gel composition suitable for making blood vessel mimics. The mechanical properties of polyvinyl alcohol (PVA) hydrogel changed in the range 70–335 kPa by changing the composition ratio, and double network (DN) gel changed in the range 0.13–1.06 MPa by changing the composition ratio. These gels could be adjusted by changing the material composition to provide Young's moduli similar to that of blood vessels. The photoelastic properties of PVA hydrogel changed in the range 1.38–2.76 × 10−9/Pa by changing the composition ratio, and DN gel changed in the range 0.012–0.029 × 10−9/Pa by changing the composition ratio.

References

1.
Molyneux
,
A.
,
Kerr
,
R. S. C.
,
Yu
,
L.-M.
,
Sneade
,
M.
,
Yarnold
,
J. A.
, and
Sandercock
,
P.
,
2005
, “
International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping Versus Endovascular Coiling in 2143 Patients With Ruptured Intracranial Aneurysms: A Randomized Comparison of Effects on Survival Dependency Seizures Rebleeding Subgroups and Aneurysm Occlusion
,”
Lancet
,
306
, pp.
809
817
.10.1016/S0140-6736(05)67214-5
2.
Saver
,
J. L.
,
Goyal
,
M.
,
Bonafe
,
A.
,
Diener
,
H.-C.
,
Levy
,
E. I.
,
Pereira
,
V. M.
,
Albers
,
G. W.
,
Cognard
,
C.
,
Cohen
,
D. J.
,
Hacke
,
W.
,
Jansen
,
O.
,
Jovin
,
T. G.
,
Mattle
,
H. P.
,
Nogueira
,
R. G.
,
Siddiqui
,
A. H.
,
Yavagal
,
D. R.
,
Baxter
,
B. W.
,
Devlin
,
T. G.
,
Lopes
,
D. K.
,
Reddy
,
V. K.
,
Du Mesnil de Rochemont
,
R.
,
Singer
,
O. C.
, and
Jahan
,
R.
,
2015
, “
Stent-Retriever Thrombectomy After Intravenous t-PA Vs. t-PA Alone in Stroke
,”
New Engl. Med.
,
372
(
24
), pp.
2285
2295
.10.1056/NEJMoa1415061
3.
Clogenson
,
H. C. M.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J.
,
2013
, “
Time-Action Analysis of Catheter Manipulation During Navigation Tasks in Bifurcations
,”
ASME J. Med. Devices
,
7
(
4
), p.
044501
.10.1115/1.4025188
4.
FAIN-Biomedical
,
2020
, “
Surgical Simulator From FAIN-Biomedical
,”
FAIN-Biomedical
, Okayama, Japan, accessed Dec. 1, 2020, http://fain-biomedical.com/
5.
Tanimoto
,
M.
,
Arai
,
F.
,
Fukuda
,
T.
,
Iwata
,
H.
,
Itoigawa
,
K.
,
Gotoh
,
Y.
,
Hashimoto
,
M.
, and
Negoro
,
M.
,
1998
, “
Study on Micro Force Sensor for Minimum Invasive Surgery
,”
Trans. Jpn. Soc. Mech. Eng. C
,
64
(
620
), pp.
1266
1271
.10.1299/kikaic.64.1266
6.
Hayashi
,
K.
,
Hirao
,
T.
,
Sakai
,
N.
,
Horie
,
N.
,
Izumo
,
T.
, and
Nagata
,
I.
,
2014
, “
Nationwide Study of Endovascular Treatment for Vasospasm Following Subarachnoid Hemorrhage
,”
Surg. Cerebral Stroke
,
42
(
4
), pp.
253
256
.10.2335/scs.42.253
7.
Akira
,
S.
,
1986
,
Stress Strain Analysis
,
Asakura-Shoten
,
Japan
.
8.
Kilcast
,
D.
,
Boyar
,
M. M.
, and
Hudson
,
J. B.
,
1984
, “
Gelatin Photoelasticity: A New Technique for Measuring Stress Distributions in Gels During Penetration Testing
,”
J. Food Sci.
,
49
, pp.
654
655
.10.1111/j.1365-2621.1984.tb12494.x
9.
Taedelli
,
J. D. C.
,
da Costa Valente
,
M. L.
,
Pa Maced
,
A.
, and
dos
,
A. C.
, reis.,
2021
, “
Evaluation of Biomechanical and Stress Distribution of Different Dental Implant Designs: Primary Stability and Photoelastic Analysis
,” IRBM, epub.10.1016/j.irbm.2021.01.003
10.
Iwatsuki
,
S.
,
Hidai
,
H.
,
Chiba
,
A.
,
Matsusaka
,
S.
, and
Morita
,
N.
,
2020
, “
Examination of Internal Stress by Photoelasticity in Laser Cleaving of Glass
,”
Precis. Eng.
,
64
, pp.
122
128
.10.1016/j.precisioneng.2020.03.019
11.
Rachev
,
A.
,
Felden
,
L.
, and
Ku
,
D. N.
, and
2011
, “
Design and Fabrication of a Mechanically Matched Vascular Graft
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091004
.10.1115/1.4004533
12.
Ota
,
T.
,
Tase
,
T.
,
Okada
,
K
,
Saito
,
A
,
Takamatsu
,
K.
,
Kawakami
,
M.
, and
Furukawa
,
H.
,
2016
, “
Establishment of Gel Materials With Different Mechanical Properties by 3D Gel Printer SWIM-ER
,”
SPIE
Paper No. 9802.10.1117/12.2218247
13.
Haque
,
M. A.
,
Kurokawa
,
T.
,
Kamita
,
G.
, and
Gong
,
J. P.
,
2011
, “
Lamellar Bilayers as Reversible Sacrificial Bonds to Toughen Hydrogel: Hysteresis Self-Recovery Fatigue Resistance and Crack Blunting
,”
Macromolecules
,
44
(
22
), pp.
8916
8924
.10.1021/ma201653t
14.
Gong
,
J. P.
,
Katsuyama
,
Y.
,
Kurokawa
,
T.
, and
Osada
,
Y.
,
2003
, “
Double-Network Hydrogels With Extremely High Mechanical Strength
,”
Advanced Mater.
,
15
(
14
), pp.
1155
1158
.10.1002/adma.200304907
15.
Ajovalasit
,
A.
,
Barone
,
S.
, and
Petrucci
,
G.
,
1995
, “
Towards RGB Photoelasticity: Full-Field Automated Photoelasticity in White Light
,”
Exp. Mech.
,
35
(
3
), pp.
193
200
.10.1007/BF02319657
16.
Ramesh
,
K.
, and
Deshmukh
,
S.
,
1996
, “
Three Fringe Photoelasticity—Use of Colour Image Processing Hardware to Automate Ordering of Isochromatics
,”
Strain
,
32
(
3
), pp.
79
86
.10.1111/j.1475-1305.1996.tb01006.x
17.
Antonio Quiroga
,
J.
,
Garcı́a-Botella
,
Á.
, and., and
Gómez-Pedrero
,
J. A.
,
2002
, “
Improved Method for Isochromatic Demodulation by RGB Calibration
,”
Appl. Opt.
,
41
(
17
), pp.
3461
3468
.10.1364/AO.41.003461
18.
Coker
,
E. G.
, and
Filon
,
L. N. G.
,
1957
, “
A Treatise on Photo-Elasticity
,”
Aeronaut. J
.,
62
, p.
69
.10.1017/S0368393100067973
19.
Shuhei
,
A.
,
2018
, “
Image Processing Stress Measurement of Hydrogels Using Photoelastic Method
,” Master thesis,
Nagoya University
,
Aichi, Japan
.
20.
Jones
,
R. C.
,
1941
, “
A New Calculus for the Treatment of Optical Systems: I—Description and Discussion of the Calculus
,”
J. Opt. Soc. Am.
,
31
(
7
), pp.
488
493
.10.1364/JOSA.31.000488
21.
Hayashi
,
A. H.
, and
Sato
,
M. K.
,
1996
,
Data Book on Mechanical Properties of Living Cells Tissues and Organs
, Springer, Tokyo, Japan.10.1007/978-4-431-65862-7
22.
Ebrahimi
,
A. P.
,
2009
, “
Mechanical Properties of Normal and Diseased Cerebrovascular System
,”
J. Vasc. Interven. Neurol.
,
2
(
2
), pp.
155
162
.https://europepmc.org/article/pmc/3317338
23.
Yamada
,
D.
,
2021
, “
Development of Catheter Surgery Simulator
,” Master thesis,
Nagoya University
,
Aichi, Japan
.
24.
Ikeda
,
S.
,
Okada
,
Y.
,
Fukuda
,
T.
,
Arai
,
F.
,
Neguro
,
M.
, and
Takahashi
,
I.
,
2008
, “
Patient-Tailored Cerebral Artery Model for Simulating Neurovascular Intervention
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
74
(
743
), pp.
261
239
.10.1299/kikaic.72.2601
You do not currently have access to this content.