Abstract

The cannulation of blood vessels is one of the most basic and essential interventions in medical practice. A common adverse event of this procedure is miscannulation with infiltration of the second part of the vessel wall, often resulting in a perivascular hematoma. In hemodialysis patients, surgically created arteriovenous conduits are cannulated 3–4 times per week to provide sufficient blood supply to the hemodialysis machine. However, the high blood flow and pressure in these vascular access sites increase the risk of complications upon miscannulation. A novel needle system that allows for rapid automatic retraction of the needle in response to contact with blood after positioning the cannula in the blood vessel was developed to reduce the risk of miscannulation. The device can easily be incorporated into existing needle designs. The mechanical functionality of the device was validated by testing prototypes in an ex vivo system. Optimization of the needle system was performed to enhance response time and piston shape. A final prototype design was manufactured and validated. The optimal membrane composition and piston shape were determined, which resulted in a needle response time of 40 ms upon contact with fluid at a pressure of 100 mmHg (arterial pressure). Here, we have successfully designed, mechanically validated, and tested a novel automated rapid needle retraction system that allows incorporation into existing needle systems. This device could notably decrease the difficulty of vessel cannulation and the prevalence of hematoma formation.

References

1.
van Loon
,
M. M.
,
Kessel
,
A. G. H.
,
van der Sande
,
F. M.
, and
Tordoir
,
J. H. M.
,
2009
, “
Cannulation Practice Patterns in Haemodialysis Vascular Access: Predictors for Unsuccessful Cannulation
,”
J. Renal Care
,
35
(
2
), pp.
82
89
.10.1111/j.1755-6686.2009.00092.x
2.
Lee
,
T.
,
Barker
,
J.
, and
Allon
,
M.
,
2006
, “
Needle Infiltration of Arteriovenous Fistulae in Hemodialysis: Risk Factors and Consequences
,”
Am. J. Kidney Dis.
,
47
(
6
), pp.
1020
1026
.10.1053/j.ajkd.2006.02.181
3.
Shiu
,
Y. T.
,
Rotmans
,
J. I.
,
Geelhoed
,
W. J.
,
Pike
,
D. B.
, and
Lee
,
T.
,
2019
, “
Arteriovenous Conduits for Hemodialysis: How to Better Modulate the Pathophysiological Vascular Response to Optimize Vascular Access Durability
,”
Am. J. Physiol. Renal Physiol.
,
316
(
5
), pp.
F794
F806
.10.1152/ajprenal.00440.2018
4.
Robbin
,
M. L.
,
Greene
,
T.
,
Cheung
,
A. K.
,
Allon
,
M.
,
Berceli
,
S. A.
,
Kaufman
,
J. S.
,
Allen
,
M.
,
Imrey
,
P. B.
,
Radeva
,
M. K.
,
Shiu
,
Y.-T.
,
Umphrey
,
H. R.
,
Young
,
C. J.
, and
Group
,
F. T H. F. M.
,
2016
, “
Arteriovenous Fistula Development in the First 6 Weeks After Creation
,”
Radiology
,
279
(
2
), pp.
620
629
.10.1148/radiol.2015150385
5.
Wilson
,
B.
, and
Harwood
,
L.
,
2017
, “
Outcomes for Successful Cannulation of the Arteriovenous Fistula: Perspectives From Patients on Hemodialysis
,”
Nephrol. Nurs. J.
,
44
(
5
), pp.
381
388
.https://pubmed.ncbi.nlm.nih.gov/29160973/#:~:text=Using%20content%20analysis%2C%20four%20themes,the%20impact%20of%20the%20environment.
6.
Marticorena
,
R. M.
,
Dacouris
,
N.
, and
Donnelly
,
S. M.
,
2018
, “
Randomized Pilot Study to Compare Metal Needles Versus Plastic Cannulae in the Development of Complications in Hemodialysis Access
,”
J. Vasc. Access
,
19
(
3
), pp.
272
282
.10.1177/1129729817747535
7.
Falanga
,
V.
, and
Bucalo
,
B.
,
1993
, “
Use of a Durometer to Assess Skin Hardness
,”
J. Am. Acad. Dermatol.
,
29
(
1
), pp.
47
51
.10.1016/0190-9622(93)70150-R
8.
Moon
,
R. J.
,
Martini
,
A.
,
Nairn
,
J.
,
Simonsen
,
J.
, and
Youngblood
,
J.
,
2011
, “
Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites
,”
Chem. Soc. Rev.
,
40
(
7
), pp.
3941
3994
.10.1039/c0cs00108b
9.
Mahadeva
,
S. K.
,
Yun
,
S.
, and
Kim
,
J.
,
2011
, “
Flexible Humidity and Temperature Sensor Based on Cellulose–Polypyrrole Nanocomposite
,”
Sens. Actuators A: Phys.
,
165
(
2
), pp.
194
199
.10.1016/j.sna.2010.10.018
10.
Ramarao
,
B. V.
,
1999
, “
Moisture Sorption and Transport Processes in Paper Materials
,”
Studies in Surface Science and Catalysis
,
A.
Dąbrowski
, ed.,
Elsevier
, Amsterdam, The Netherlands, pp.
531
560
.
11.
Hemodialysis Adequacy Work
,
G.
,
2006
, “
Clinical Practice Guidelines for Hemodialysis Adequacy, Update 2006
,”
Am. J. Kidney Dis.
,
48
(
Suppl. 1
), pp.
S2
S90
.10.1053/j.ajkd.2006.03.051
12.
van Loon
,
F. H. J.
,
Buise
,
M. P.
,
Claassen
,
J. J. F.
,
Dierick-van Daele
,
A. T. M.
, and
Bouwman
,
A. R. A.
,
2018
, “
Comparison of Ultrasound Guidance With Palpation and Direct Visualisation for Peripheral Vein Cannulation in Adult Patients: A Systematic Review and Meta-Analysis
,”
Br. J. Anaesth.
,
121
(
2
), pp.
358
366
.10.1016/j.bja.2018.04.047
13.
McNeely
,
H. L.
,
Ream
,
T. L.
,
Thrasher
,
J. M.
,
Dziadkowiec
,
O.
, and
Callahan
,
T. J.
,
2018
, “
Utilization of a Biomedical Device (VeinViewer(®)) to Assist With Peripheral Intravenous Catheter (PIV) Insertion for Pediatric Nurses
,”
J. Spec. Pediatr. Nurs JSPN
,
23
(
2
), p.
e12208
.10.1111/jspn.12208
14.
Innes
,
A.
,
Farrell
,
A. M.
,
Burden
,
R. P.
,
Morgan
,
A. G.
, and
Powell
,
R. J.
,
1994
, “
Complement Activation by Cellulosic Dialysis Membranes
,”
J. Clin. Pathol.
,
47
(
2
), pp.
155
158
.10.1136/jcp.47.2.155
15.
Scheer
,
B.
,
Perel
,
A.
, and
Pfeiffer
,
U. J.
,
2002
, “
Clinical Review: Complications and Risk Factors of Peripheral Arterial Catheters Used for Haemodynamic Monitoring in Anaesthesia and Intensive Care Medicine
,”
Crit. Care (London, England)
,
6
(
3
), pp.
199
204
.10.1186/cc1489
You do not currently have access to this content.