Abstract

The objective of this paper is to describe the development of a minimally invasive cochlear implant surgery (MICIS) electrode array insertion tool concept to enable clinical translation. First, analysis of the geometric parameters of potential MICIS patients (N = 97) was performed to inform tool design, inform MICIS phantom model design, and provide further insight into MICIS candidacy. Design changes were made to the insertion tool based on clinical requirements and parameter analysis results. A MICIS phantom testing model was built to evaluate insertion force profiles in a clinically realistic manner, and the new tool design was evaluated in the model and in cadavers to test clinical viability. Finally, after regulatory approval, the tool was used for the first time in a clinical case. Results of this work included first, in the parameter analysis, approximately 20% of the population was not considered viable MICIS candidates. Additionally, one 3D printed tool could accommodate all viable candidates with polyimide sheath length adjustments accounting for interpatient variation. The insertion tool design was miniaturized out of clinical necessity and a disassembly method, necessary for removal around the cochlear implant, was developed and tested. Phantom model testing revealed that the force profile of the insertion tool was similar to that of traditional forceps insertion. Cadaver testing demonstrated that all clinical requirements (including complete disassembly) were achieved with the tool, and the new tool enabled 15% deeper insertions compared to the forceps approach. Finally, and most importantly, the tool helped achieve a full insertion in its first MICIS clinical case. In conclusion, the new insertion tool provides a clinically viable solution to one of the most difficult aspects of MICIS.

References

1.
NIDCD
,
2016
, “
Cochlear Implants
,” NIDCD, Bethesda, MD, accessed Mar. 3, 2021, https://www.nidcd.nih.gov/health/cochlear-implants
2.
Rau
,
T. S.
,
Witte
,
S.
,
Uhlenbusch
,
L.
,
Lexow
,
G. J.
,
Hügl
,
S.
,
Kahrs
,
L. A.
,
Majdani
,
O.
, and
Lenarz
,
T.
,
2018
, “
Minimally Invasive Mastoidectomy Approach Using a Mouldable Surgical Targeting System. A Proof of Concept
,”
Curr. Dir. Biomed. Eng.
,
4
(
1
), pp.
403
406
.10.1515/cdbme-2018-0096
3.
Migirov
,
L.
,
Dagan
,
E.
, and
Kronenberg
,
J.
,
2010
, “
Suprameatal Approach for Cochlear Implantation in Children: Our Experience With 320 Cases
,”
Cochlear Implants Int.
,
11
(
Suppl. 1
), pp.
195
198
.10.1179/146701010X12671177818786
4.
Marchioni
,
D.
,
Grammatica
,
A.
,
Alicandri-Ciufelli
,
M.
,
Genovese
,
E.
, and
Presutti
,
L.
,
2014
, “
Endoscopic Cochlear Implant Procedure
,”
Eur. Arch. Oto-Rhino-Laryngol.
,
271
(
5
), pp.
959
966
.10.1007/s00405-013-2490-4
5.
Häusler
,
R.
,
2002
, “
Cochlear Implantation Without Mastoidectomy: The Pericanal Electrode Insertion Technique
,”
Acta Otolaryngol.
,
122
(
7
), pp.
715
719
.10.1080/00016480260349773
6.
Kiratzidis
,
T.
,
Arnold
,
W.
, and
Iliades
,
T.
,
2002
, “
Veria Operation Updated—I: The Trans-Canal Wall Cochlear Implantation
,”
J. Oto-Rhino-Laryngol., Head Neck Surg.
, 64(6), pp.
406
412
.10.1159/000067578
7.
Singhal
,
P.
,
Nagaraj
,
S.
,
Verma
,
N.
,
Goyal
,
A.
,
Keshri
,
A.
,
Rajeev
,
K. K.
,
Agarwal
,
S.
, and
Sharma
,
M. P.
,
2020
, “
Modified Veria Technique for Cochlear Implantation by Postaural Approach
,”
Indian J. Otolaryngol. Head Neck Surg.
,
72
(
3
), pp.
370
374
.10.1007/s12070-020-01895-w
8.
El-Anwar
,
M. W.
,
Elaassar
,
A. S.
, and
Foad
,
Y. A.
,
2015
, “
Non-Mastoidectomy Cochlear Implant Approaches: A Literature Review
,”
Int. Arch. Otorhinolaryngol.
,
20
(
2
), pp.
180
184
.10.1055/s-0035-1558871
9.
Topsakal
,
V.
,
Matulic
,
M.
,
Assadi
,
M. Z.
,
Mertens
,
G.
,
Van Rompaey
,
V.
, and
Van de Heyning
,
P.
,
2020
, “
Comparison of the Surgical Techniques and Robotic Techniques for Cochlear Implantation in Terms of the Trajectories Toward the Inner Ear
,”
J. Int. Adv. Otol.
,
16
(
1
), pp.
3
7
.10.5152/iao.2020.8113
10.
Kobler
,
J. P.
,
Nuelle
,
K.
,
Lexow
,
G. J.
,
Rau
,
T. S.
,
Majdani
,
O.
,
Kahrs
,
L. A.
,
Kotlarski
,
J.
, and
Ortmaier
,
T.
,
2016
, “
Configuration Optimization and Experimental Accuracy Evaluation of a Bone-Attached, Parallel Robot for Skull Surgery
,”
Int. J. Comput. Assisted Radiol. Surg.
,
11
(
3
), pp.
421
436
.10.1007/s11548-015-1300-4
11.
Kratchman
,
L. B.
,
Blachon
,
G. S.
,
Withrow
,
T. J.
,
Balachandran
,
R.
,
Labadie
,
R. F.
, and
Webster
,
R. J.
,
2011
, “
Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation
,”
IEEE Trans. Biomed. Eng.
,
58
(
10
), pp.
2904
2910
.10.1109/TBME.2011.2162512
12.
Baron
,
S.
,
Eilers
,
H.
,
Munske
,
B.
,
Toennies
,
J. L.
,
Balachandran
,
R.
,
Labadie
,
R. F.
,
Ortmaier
,
T.
, and
Webster
,
R. J.
,
2010
, “
Percutaneous Inner-Ear Access Via an Image-Guided Industrial Robot System
,”
Proc. Inst. Mech. Eng. Part H
,
224
(
5
), pp.
633
649
.10.1243/09544119JEIM781
13.
Majdani
,
O.
,
Rau
,
T. S.
,
Baron
,
S.
,
Eilers
,
H.
,
Baier
,
C.
,
Heimann
,
B.
,
Ortmaier
,
T.
,
Bartling
,
S.
,
Lenarz
,
T.
, and
Leinung
,
M.
,
2009
, “
A Robot-Guided Minimally Invasive Approach for Cochlear Implant Surgery: Preliminary Results of a Temporal Bone Study
,”
Int. J. Comput. Assisted Radiol. Surg.
,
4
(
5
), pp.
475
486
.10.1007/s11548-009-0360-8
14.
Duret
,
S.
,
Guigou
,
C.
,
Grelat
,
M.
, and
Bozorg-Grayeli
,
A.
,
2020
, “
Minimally Invasive Cochlear Implantation Assisted by Intraoperative CT Scan Combined to Neuronavigation
,”
Otol. Neurotol.
,
41
(
4
), pp.
e441
e448
.10.1097/MAO.0000000000002577
15.
Caversaccio
,
M.
,
Wimmer
,
W.
,
Anso
,
J.
,
Mantokoudis
,
G.
,
Gerber
,
N.
,
Rathgeb
,
C.
,
Schneider
,
D.
,
Hermann
,
J.
,
Wagner
,
F.
,
Scheidegger
,
O.
,
Huth
,
M.
,
Anschuetz
,
L.
,
Kompis
,
M.
,
Williamson
,
T.
,
Bell
,
B.
,
Gavaghan
,
K.
, and
Weber
,
S.
,
2019
, “
Robotic Middle Ear Access for Cochlear Implantation: First in Man
,”
PLoS One
,
14
(
8
), p.
e0220543
.10.1371/journal.pone.0220543
16.
Labadie
,
R. F.
,
Balachandran
,
R.
,
Noble
,
J. H.
,
Blachon
,
G. S.
,
Mitchell
,
J. E.
,
Reda
,
F. A.
,
Dawant
,
B. M.
, and
Fitzpatrick
,
J. M.
,
2014
, “
Minimally Invasive Image-Guided Cochlear Implantation Surgery: First Report of Clinical Implementation
,”
Laryngoscope
,
124
(
8
), pp.
1915
1922
.10.1002/lary.24520
17.
Zhang
,
J.
,
Wei
,
W.
,
Ding
,
J.
,
Thomas Roland
,
J.
,
Manolidis
,
S.
,
Simaan
,
N.
,
Roland
,
J. T.
,
Manolidis
,
S.
, and
Simaan
,
N.
,
2010
, “
Inroads Toward Robot-Assisted Cochlear Implant Surgery Using Steerable Electrode Arrays
,”
Otol. Neurotol.
,
31
(
8
), pp.
1199
1206
.10.1097/MAO.0b013e3181e7117e
18.
Pile
,
J.
, and
Simaan
,
N.
,
2014
, “
Modeling, Design, and Evaluation of a Parallel Robot for Cochlear Implant Surgery
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1746
1755
.10.1109/TMECH.2014.2308479
19.
Bruns
,
T. L.
,
Riojas
,
K. E.
,
Ropella
,
D. S.
,
Cavilla
,
M. S.
,
Petruska
,
A. J.
,
Freeman
,
M. H.
,
Labadie
,
R. F.
,
Abbott
,
J. J.
, and
Webster
,
R. J.
,
2020
, “
Magnetically Steered Robotic Insertion of Cochlear-Implant Electrode Arrays: System Integration and First-In-Cadaver Results
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2240
2247
.10.1109/LRA.2020.2970978
20.
Kaufmann
,
C. R.
,
Henslee
,
A. M.
,
Claussen
,
A.
, and
Hansen
,
M. R.
,
2020
, “
Evaluation of Insertion Forces and Cochlea Trauma Following Robotics-Assisted Cochlear Implant Electrode Array Insertion
,”
Otol. Neurotol.
, 41(5), pp.
631
638
.10.1097/MAO.0000000000002608
21.
Rau
,
T. S.
,
Zuniga
,
M. G.
,
Salcher
,
R.
, and
Lenarz
,
T.
,
2020
, “
A Simple Tool to Automate the Insertion Process in Cochlear Implant Surgery
,”
Int. J. Comput. Assisted Radiol. Surg.
, 15(11), pp.
1931
1939
.10.1007/s11548-020-02243-7
22.
Schurzig
,
D.
,
Labadie
,
R. F.
,
Hussong
,
A.
,
Rau
,
T. S.
, and
Webster, Iii
,
R. J.
,
2012
, “
Design of a Tool Integrating Force Sensing With Automated Insertion in Cochlear Implantation
,”
IEEE/ASME Trans. Mechatronics
,
17
(
2
), pp.
381
389
.10.1109/TMECH.2011.2106795
23.
Miroir
,
M.
,
Nguyen
,
Y.
,
Kazmitcheff
,
G.
,
Ferrary
,
E.
,
Sterkers
,
O.
, and
Grayeli
,
A. B.
,
2012
, “
Friction Force Measurement During Cochlear Implant Insertion: Application to a Force-Controlled Insertion Tool Design
,”
Otol. Neurotol.
, 33(6), pp.
1092
1100
.10.1097/MAO.0b013e31825f24de
24.
Hussong
,
A.
,
Rau
,
T. S.
,
Ortmaier
,
T.
,
Heimann
,
B.
,
Lenarz
,
T.
, and
Majdani
,
O.
,
2010
, “
An Automated Insertion Tool for Cochlear Implants: Another Step Towards Atraumatic Cochlear Implant Surgery
,”
Int. J. Comput. Assisted Radiol. Surg.
,
5
(
2
), pp.
163
171
.10.1007/s11548-009-0368-0
25.
Dadd
,
F.
,
Gibson
,
P.
,
Ackiewicz
,
M.
,
Gibson
,
P.
,
Mackiewicz
,
M.
,
Meagher
,
K.
,
Treaba
,
C.
,
Tsu
,
H. H. S.
, and
McCusker
,
D.
,
2016
, “
Cartridge for an Electrode Array Insertion Device
,” U.S. Patent No. US 9.415,208 B2.
26.
Caversaccio
,
M.
,
Gavaghan
,
K.
,
Wimmer
,
W.
,
Williamson
,
T.
,
Ansò
,
J.
,
Mantokoudis
,
G.
,
Gerber
,
N.
,
Rathgeb
,
C.
,
Feldmann
,
A.
,
Wagner
,
F.
,
Scheidegger
,
O.
,
Kompis
,
M.
,
Weisstanner
,
C.
,
Zoka-Assadi
,
M.
,
Roesler
,
K.
,
Anschuetz
,
L.
,
Huth
,
M.
, and
Weber
,
S.
,
2017
, “
Robotic Cochlear Implantation: Surgical Procedure and First Clinical Experience
,”
Acta Otolaryngol.
,
137
(
4
), pp.
447
454
.10.1080/00016489.2017.1278573
27.
Kratchman
,
L. B.
,
Schurzig
,
D.
,
McRackan
,
T. R.
,
Balachandran
,
R.
,
Noble
,
J. H.
,
Webster
,
R. J.
, and
Labadie
,
R. F.
,
2012
, “
A Manually Operated, Advance Off-Stylet Insertion Tool for Minimally Invasive Cochlear Implantation Surgery
,”
IEEE Trans. Biomed. Eng.
,
59
(
10
), pp.
2792
2800
.10.1109/TBME.2012.2210220
28.
Riojas
,
K. E.
,
Narasimhan
,
N.
,
Morrel
,
W. G.
,
Mitchell
,
J.
,
Bruns
,
T.
,
Webster
,
R. J.
, and
Labadie
,
R. F.
,
2019
, “
A New Manual Insertion Tool for Minimally Invasive, Image-Guided Cochlear Implant Surgery
,”
Proc. SPIE
10951
, p.
109510J
.10.1117/12.2512471
29.
Narasimhan
,
N.
,
Riojas
,
K. E.
,
Bruns
,
T. L.
,
Mitchell
,
J. E.
,
Webster
,
R. J.
, and
Labadie
,
R. F.
,
2019
, “
A Simple Manual Roller Wheel Insertion Tool for Electrode Array Insertion in Minimally Invasive Cochlear Implant Surgery
,”
ASME
Paper No. DMD2019-3249.10.1115/DMD2019-3249
30.
Noble
,
J. H.
,
Dawant
,
B. M.
,
Warren
,
F. M.
, and
Labadie
,
R. F.
,
2009
, “
Automatic Identification and 3D Rendering of Temporal Bone Anatomy
,”
Otol. Neurotol.
,
30
(
4
), pp.
436
–4
42
.10.1097/MAO.0b013e31819e61ed
31.
Noble
,
J. H.
,
Labadie
,
R. F.
,
Majdani
,
O.
, and
Dawant
,
B. M.
,
2011
, “
Automatic Segmentation of Intracochlear Anatomy in Conventional CT
,”
IEEE Trans. Biomed. Eng.
,
58
(
9
), pp.
2625
2632
.10.1109/TBME.2011.2160262
32.
Noble
,
J. H.
,
Gifford
,
R. H.
,
Labadie
,
R. F.
, and
Dawant
,
B. M.
,
2012
, “
Statistical Shape Model Segmentation and Frequency Mapping of Cochlear Implant Stimulation Targets in CT
,” (
International Conference on Medical Image Computing and Computer-Assisted Intervention)
, Nice, France, Oct. 1–5, pp.
421
428
.10.1007/978-3-642-33418-4_52
33.
Noble
,
J. H.
,
Majdani
,
O.
,
Labadie
,
R. F.
,
Dawant
,
B.
, and
Fitzpatrick
,
J. M.
,
2010
, “
Automatic Determination of Optimal Linear Drilling Trajectories for Cochlear Access Accounting for Drill-Positioning Error
,”
Int. J. Med. Robot. Comput. Assisted Surg.
,
6
(
3
), pp.
281
290
.10.1002/rcs.330
34.
Formlabs
,
2018
, “Formlabs Application Guide: 3D Printing Surgical Guides With the Form 2,”
Formlabs
, Somerville, MA, accessed Mar. 3, 2021, https://support.formlabs.com/s/article/Using-Dental-SG-Resin?language=en_US
35.
MEDEL
,
2021
, “Mi1200 SYNCHRONY Surgical Guideline,”
MEDEL
, Innsbruck, Austria, accessed Mar. 3, 2021, https://s3.medel.com/documents/AW/AW32151_30_Surgical%20Guideline%20SYNCHRONY%20-%20EN%20English_Web.pdf
36.
Carlson
,
M. L.
,
Driscoll
,
C. L. W. W.
,
Gifford
,
R. H.
,
Service
,
G. J.
,
Tombers
,
N. M.
,
Hughes-Borst
,
B. J.
,
Neff
,
B. A.
, and
Beatty
,
C. W.
,
2011
, “
Implications of Minimizing Trauma During Conventional Cochlear Implantation
,”
Otol. Neurotol.
,
32
(
6
), pp.
962
968
.10.1097/MAO.0b013e3182204526
37.
Mirsalehi
,
M.
,
Rau
,
T. S.
,
Harbach
,
L.
,
Hügl
,
S.
,
Mohebbi
,
S.
,
Lenarz
,
T.
, and
Majdani
,
O.
,
2017
, “
Insertion Forces and Intracochlear Trauma in Temporal Bone Specimens Implanted With a Straight Atraumatic Electrode Array
,”
Eur. Arch. Oto-Rhino-Laryngol.
,
274
(
5
), pp.
2131
2140
.10.1007/s00405-017-4485-z
38.
De Seta
,
D.
,
Torres
,
R.
,
Russo
,
F. Y.
,
Ferrary
,
E.
,
Kazmitcheff
,
G.
,
Heymann
,
D.
,
Amiaud
,
J.
,
Sterkers
,
O.
,
Bernardeschi
,
D.
, and
Nguyen
,
Y.
,
2017
, “
Damage to Inner Ear Structure During Cochlear Implantation: Correlation Between Insertion Force and Radio-Histological Findings in Temporal Bone Specimens
,”
Hear. Res.
,
344
, pp.
90
97
.10.1016/j.heares.2016.11.002
39.
Lexow
,
G. J.
,
Kluge
,
M.
,
Majdani
,
O.
,
Lenarz
,
T.
, and
Rau
,
T. S.
,
2017
, “
Phantom-Based Evaluation Method for Surgical Assistance Devices in Minimally Invasive Cochlear Implantation
,”
Proc. SPIE
10135
, p.
101352N
.10.1117/12.2254381
40.
Wells Iii
,
W. M.
,
Viola
,
P.
,
Atsumi
,
H.
,
Nakajima
,
S.
, and
Kikinis
,
R.
,
1996
, “
Multi-Modal Volume Registration by Maximization of Mutual Information
,”
Med. Image Anal.
, 1(1), pp.
35
51
.10.1016/S1361-8415(01)80004-9
41.
Maes
,
F.
,
Collignon
,
A.
,
Vandermeulen
,
D.
,
Marchal
,
G.
, and
Suetens
,
P.
,
1997
, “
Multimodality Image Registration by Maximization of Mutual Information
,”
IEEE Trans. Med. Imaging
,
16
(
2
), pp.
187
198
.10.1109/42.563664
42.
West
,
J. B.
, and others,
1996
, “
Comparison and Evaluation of Retrospective Intermodality Image Registration Techniques
,”
Proc. SPIE
2710
, pp.
332
347
.10.1117/12.237936
43.
Williamson
,
T.
,
Gavaghan
,
K.
,
Gerber
,
N.
,
Weder
,
S.
,
Anschuetz
,
L.
,
Wagner
,
F.
,
Weisstanner
,
C.
,
Mantokoudis
,
G.
,
Caversaccio
,
M.
, and
Weber
,
S.
,
2017
, “
Population Statistics Approach for Safety Assessment in Robotic Cochlear Implantation
,”
Otol. Neurotol.
,
38
(
5
), pp.
759
764
.10.1097/MAO.0000000000001357
44.
Bhatia
,
K.
,
Gibbin
,
K. P.
,
Nikolopoulos
,
T. P.
, and
O'Donoghue
,
G. M.
,
2004
, “
Surgical Complications and Their Management in a Series of 300 Consecutive Pediatric Cochlear Implantations
,”
Otol. Neurotol.
,
25
(
5
), pp.
730
739
.10.1097/00129492-200409000-00015
45.
EilersBaron
,
H.
,
Ortmaier
,
S.
,
Heimann
,
T.
,
Baier
,
B. C.
,
Rau
,
T.
,
Leinung
,
S. M.
, and
Majdani
,
O.
,
2009
, “
Navigated, Robot Assisted Drilling of a Minimally Invasive Cochlear Access
,”
IEEE 2009 International Conference on Mechatronics
, Malaga, Spain, Apr.
14
17
.10.1109/ICMECH.2009.4957213
46.
Grupe
,
G.
,
Rademacher
,
G.
,
Hofmann
,
S.
,
Stratmann
,
A.
,
Mittmann
,
P.
,
Mutze
,
S.
,
Ernst
,
A.
, and
Todt
,
I.
,
2017
, “
Evaluation of Cochlear Implant Receiver Position and Its Temporal Changes
,”
Otol. Neurotol.
,
38
(
10
), pp.
e558
e562
.10.1097/MAO.0000000000001521
47.
O'Connell
,
B. P.
,
Hunter
,
J. B.
,
Haynes
,
D. S.
,
Holder
,
J. T.
,
Dedmon
,
M. M.
,
Noble
,
J. H.
,
Dawant
,
B. M.
, and
Wanna
,
G. B.
,
2017
, “
Insertion Depth Impacts Speech Perception and Hearing Preservation for Lateral Wall Electrodes
,”
Laryngoscope
,
127
(
10
), pp.
2352
2357
.10.1002/lary.26467
48.
Labadie
,
R. F.
,
Riojas
,
K.
,
Von Wahlde
,
K.
,
Mitchell
,
J.
,
Bruns
,
T.
,
Webster III
,
R.
,
Dawant
,
B.
,
Fitzpatrick
,
J. M.
, and
Noble
,
J.
, 2021, “
Clinical Implementation of Second-Generation Minimally Invasive Image-Guided Cochlear Implantation Surgery
,”
Otology and Neurotology
, ePub.10.1097/MAO.0000000000003025
You do not currently have access to this content.