Abstract
Tele-operation has brought about a paradigm shift in the way minimally invasive surgeries are carried out. Several tele-operated robotic systems have been developed in the last three decades. In this research work, we present a practical approach for the complete design of a six degree-of-freedom (DoF) master–slave tele-operated robotic system with limited resources. This research work elaborates on the methodology followed by us for the complete system design, methods for simplifying the surgical tool design with decoupled DoF wrist utilizing stationary wire guides instead of pulleys, and method of reducing the number of balancing masses required for gravity compensation of master manipulator arms. We also demonstrate the avenues for utilizing compliant mechanism for several mechanisms of the system to reduce complexity and to mitigate the issue of biofouling. The concepts and design methodology described in this paper would serve as a starting point and design guideline for future designers of such systems in resource-constrained environments.