Abstract

Flexible instruments are extensively used in medical applications. Manipulation of these instruments is challenging and troublesome. To study the behavior of these instruments, different modeling approaches like finite element, Cosserat rod, and differential geometry have been used. In this paper, an alternate modeling approach using Bézier curve is proposed to understand large deformation in a flexible instrument. The shape is represented by a Bézier curve. The deformation includes extension, flexure, and torsion in the instrument. Strain energy and geometric constraints are formulated using Bézier control points. The shape of the deformed instrument under the given constraints is obtained by minimizing the total strain energy. Nonlinear constrained optimization is used for the minimization to find the deformed shape. The proposed method is applied for large elastic deformation in three-dimensional space. Loop formation is observed and validated with the experimental results. The proposed method will help in understanding the mechanics of a flexible instrument. Looping is a common problem during colonoscopy. The developed model will help in developing strategies for the safe introduction of these instruments inside the body for performing diagnostic and surgical interventions.

References

1.
Shah
,
S. G.
,
Saunders
,
B. P.
,
Brooker
,
J. C.
, and
Williams
,
C. B.
,
2000
, “
Magnetic Imaging of Colonoscopy: An Audit of Looping, Accuracy and Ancillary Maneuvers
,”
Gastrointest. Endoscopy
,
52
(
1
), pp.
1
8
.10.1067/mge.2000.107296
2.
Khatait
,
J. P.
,
2013
, “
Motion and Force Transmission of a Flexible Instrument Inside a Curved Endoscope
,”
Ph.D. thesis
,
University of Twente
,
Twente, The Netherlands
.https://web.iitd.ac.in/~jpkhatait/docs/thesis_JPKhatait.pdf
3.
Rahman
,
I.
,
Pelitari
,
S.
,
Boger
,
P.
, and
Patel
,
P.
,
2015
, “
Magnetic Endoscopic Imaging: A Useful Ally in Colonoscopy
,”
J. Gastrointest. Dig. Syst.
,
5
(
342
), p.
3
.10.4172/2161-069X.1000342
4.
Yabuta
,
T.
,
1984
, “
Submarine Cable Kink Analysis
,”
Bull. JSME
,
27
(
231
), pp.
1821
1828
.10.1299/jsme1958.27.1821
5.
Terzopoulos
,
D.
,
Platt
,
J.
,
Barr
,
A.
, and
Fleischer
,
K.
,
1987
, “
Elastically Deformable Models
,” Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (
SIGGRAPH '87
).
Association for Computing Machinery
,
Anaheim, CA
,
July 27–31
, pp.
205
214
.10.1145/37401.37427
6.
Qin
,
H.
, and
Terzopoulos
,
D.
,
1996
, “
D-Nurbs: A Physics-Based Framework for Geometric Design
,”
IEEE Trans. Visual. Comput. Graph.
,
2
(
1
), pp.
85
96
.10.1109/2945.489389
7.
Nocent
,
O.
, and
Remion
,
Y.
,
2001
, “
Continuous Deformation Energy for Dynamic Material Splines Subject to Finite Displacements
,”
Computer Animation and Simulation 2001
,
Springer
,
Berlin
, pp.
87
97
.
8.
Theetten
,
A.
,
Grisoni
,
L.
,
Andriot
,
C.
, and
Barsky
,
B.
,
2008
, “
Geometrically Exact Dynamic Splines
,”
Comput. Aided Des.
,
40
(
1
), pp.
35
48
.10.1016/j.cad.2007.05.008
9.
Valentini
,
P. P.
, and
Pennestrì
,
E.
,
2011
, “
Modeling Elastic Beams Using Dynamic Splines
,”
Multibody Syst. Dynam.
,
25
(
3
), pp.
271
284
.10.1007/s11044-010-9232-9
10.
Khatait
,
J. P.
,
Brouwer
,
D. M.
,
Aarts
,
R. G. K. M.
, and
Herder
,
J. L.
,
2013
, “
Modeling of a Flexible Instrument to Study Its Sliding Behavior Inside a Curved Endoscope
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
10
.10.1115/1.4007539
11.
Khatait
,
J. P.
,
Brouwer
,
D. M.
,
Meijaard
,
J. P.
,
Aarts
,
R. G. K. M.
, and
Herder
,
J. L.
,
2013
, “
Flexible Multibody Modeling of a Surgical Instrument Inside an Endoscope
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011018
.10.1115/1.4026059
12.
Love
,
A. E. H.
,
2013
,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge, UK
.
13.
Antman
,
S. S.
,
1995
, “
Nonlinear Plasticity
,”
Nonlinear Problems of Elasticity
,
Springer-Verlag
,
New York
, pp.
603
628
.
14.
Ericksen
,
J.
, and
Truesdell
,
C.
,
1957
, “
Exact Theory of Stress and Strain in Rods and Shells
,”
Arch. Rat. Mech. Anal.
,
1
(
1
), pp.
295
323
.10.1007/BF00298012
15.
Spillmann
,
J.
, and
Teschner
,
M.
,
2007
, “
Corde: Cosserat Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects
,”
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
,
San Diego, CA
,
Aug. 2–4
, pp.
63
72
.https://www.researchgate.net/profile/Matthias_Teschner/publication/234812559_CORDE_Cosserat_rod_elements_for_the_dynamic_simulation_of_one-dimensional_elastic_objects/links/54a95f030cf256bf8bb95b2c/CORDE-Cosserat-rod-elements-for-the-dynamic-simulation-of-one-dimensional-elastic-objects.pdf
16.
Wakamatsu
,
H.
, and
Hirai
,
S.
,
2004
, “
Static Modeling of Linear Object Deformation Based on Differential Geometry
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
293
311
.10.1177/0278364904041882
17.
Lee
,
K.
,
1999
,
Principles of CAD/CAM/CAE Systems
,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston, MA
.
18.
Hearn
,
D.
, and
Baker
,
M. P.
,
1997
,
Computer Graphics: C Version
,
Pearson Education
,
Delhi, India
.
19.
Chouaïeb
,
N.
,
2003
, “
Kirchhoff's Problem of Helical Solutions of Uniform Rods and Their Stability Properties
,”
Ph.D. thesis
,
EPFL
,
Switzerland
.https://lcvmwww.epfl.ch/publications/data/phd/6/These_2717_Chouaieb.pdf
20.
Beer
,
F.
,
Johnston
,
E.
,
DeWolf
,
J.
, and
Mazurek
,
D.
,
2019
,
Mechanics of Materials
, 8th ed.,
McGraw-Hill Education
,
New York
.
21.
Mathworks,
2016
,
Optimization Toolbox
,
Matlab
,
Natick, MA
.
You do not currently have access to this content.