Abstract

A systematic review of the mechanical design of powered ankle–foot prostheses developed from 2000 to 2019 was conducted through database and manual searches. A total of ten English and two Chinese databases were searched using the same keywords. Moreover, information on commercialized prostheses was collected through a manual search. A total of 8729 publications were obtained from the database search, and 83 supplementary publications and 49 online product introductions were accumulated through the manual search. A total of 91 powered ankle–foot prostheses were extracted from 159 publications and online information after exclusion. The mechanical design characteristics of the prostheses were described briefly and compared after they were categorized into 11 subclassifications. This review revealed that a considerable number of powered ankle–foot prostheses were developed in the last 20 years. The development of such prostheses was characterized by alternative modes, that is, from pneumatic or hydraulic drivers to motorized drivers and from rigid transmissions to elastic actuators. This review contributes to the comprehensive understanding of current designs, which can benefit the combination of the advantages of and redundancy avoidance in future powered ankle–foot prostheses.

References

1.
Versluys
,
R.
,
Beyl
,
P.
,
Van Damme
,
M.
,
Desomer
,
A.
,
Van Ham
,
R.
, and
Lefeber
,
D.
,
2009
, “
Prosthetic Feet: State-of-the-Art Review and the Importance of Mimicking Human Ankle–Foot Biomechanics
,”
Disability Rehabil.: Assistive Technol.
,
4
(
2
), pp.
65
75
.10.1080/17483100802715092
2.
Klute, G., Czerniecki, J., and Hannaford, B., "Development of Powered Prosthetic Lower Limb," Proceedings of the 1st National Meeting, Veterans Affairs Rehabilitation, Research and Development Service, Washington, DC, Oct.
3.
Muilenburg
,
T. B.
,
2009
, “
Prosthetics for Pediatric and Adolescent Amputees
,”
Pediatric and Adolescent Osteosarcoma
,
N.
Jaffe
,
O.
Bruland
, and
S.
Bielack
, eds.,
Springer
,
Boston, MA
, pp.
395
420
.
4.
Bragaru
,
M.
,
Dekker
,
R.
, and
Geertzen
,
J. H. J. P.
,
2012
, “
Sport Prostheses and Prosthetic Adaptations for the Upper and Lower Limb Amputees: An Overview of Peer Reviewed Literature
,”
Prosthetics Orthotics Int.
,
36
(
3
), pp.
290
296
.10.1177/0309364612447093
5.
Martin
,
J.
,
Pollock
,
A.
, and
Hettinger
,
J.
,
2010
, “
Microprocessor Lower Limb Prosthetics: Review of Current State of the Art
,”
J. Prosthetics Orthotics
,
22
(
3
), pp.
183
193
.10.1097/JPO.0b013e3181e8fe8a
6.
Fite
,
K. B.
,
2017
, “
Overview of the Components Used in Active and Passive Lower-Limb Prosthetic Devices
,”
Full Stride
,
V.
Tepe
, and
C.
Peterson
, eds.,
Springer
,
New York
, pp.
55
74
.
7.
Windrich
,
M.
,
Grimmer
,
M.
,
Christ
,
O.
,
Rinderknecht
,
S.
, and
Beckerle
,
P.
,
2016
, “
Active Lower Limb Prosthetics: A Systematic Review of Design Issues and Solutions
,”
Biomed. Eng. Online
,
15
(
3
), p.
140
.10.1186/s12938-016-0284-9
8.
Cherelle
,
P.
,
Mathijssen
,
G.
,
Wang
,
Q.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2014
, “
Advances in Propulsive Bionic Feet and Their Actuation Principles
,”
Adv. Mech. Eng.
,
6
, p.
984046
.10.1155/2014/984046
9.
Versluys
,
R.
,
Desomer
,
A.
,
Lenaerts
,
G.
,
Pareit
,
O.
,
Vanderborght
,
B.
,
Perre
,
G. V. D.
,
Peeraer
,
L.
, and
Lefeber
,
D.
,
2008
, “
A Biomechatronical Transtibial Prosthesis Powered by Pleated Pneumatic Artificial Muscles
,”
Int. J. Modell., Identif.
,
4
(
4
), pp.
394
405
.10.1504/IJMIC.2008.021479
10.
Versluys
,
R.
,
Desomer
,
A.
,
Lenaerts
,
G.
,
Van Damme
,
M.
,
Beyl
,
P.
,
Van Der Perre
,
G.
,
Peeraer
,
L.
, and
Lefeber
,
D.
,
2008
, “
A Pneumatically Powered Below-Knee Prosthesis: Design Specifications and First Experiments With an Amputee
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
372
377
.10.1109/BIOROB.2008.4762842
11.
Versluys
,
R.
,
Lenaerts
,
G.
,
Van Damme
,
M.
,
Jonkers
,
I.
,
Desomer
,
A.
,
Vanderborght
,
B.
,
Peeraer
,
L.
,
Van der Perre
,
G.
, and
Lefeber
,
D.
,
2009
, “
Successful Preliminary Walking Experiments on a Transtibial Amputee Fitted With a Powered Prosthesis
,”
Prosthetics Orthotics Int.
,
33
(
4
), pp.
368
377
.10.3109/03093640902984587
12.
Versluys
,
R.
,
Matthys
,
A.
,
Van Ham
,
R.
,
Vanderniepen
,
I.
, and
Lefeber
,
D.
,
2009
, “
Powered Ankle-Foot System That Mimics Intact Human Ankle Behavior: Proposal of a New Concept
,”
IEEE 11th International Conference on Rehabilitation Robotics
, Kyoto, Japan, June 23–26, pp.
658
662
.10.1109/ICORR.2009.5209535
13.
Huang
,
S.
,
Wensman
,
J. P.
, and
Ferris
,
D. P.
,
2014
, “
An Experimental Powered Lower Limb Prosthesis Using Proportional Myoelectric Control
,”
ASME J. Med. Devices
,
8
(
2
), p.
24501
.10.1115/1.4026633
14.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2007
, “
Design and Control of a Powered Knee and Ankle Prosthesis
,”
IEEE International Conference on Robotics and Automation
, Roma, Italy, Apr. 10–14, pp.
4134
4139
.10.1109/ROBOT.2007.364114
15.
Sup
,
F. C.
, and
Goldfarb
,
M.
, “
Design of a Pneumatically Actuated Transfemoral Prosthesis
,”
ASME
Paper No. IMECE2006-15707. 10.1115/IMECE2006-15707
16.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
263
273
.10.1177/0278364907084588
17.
Varol
,
H. A.
, and
Goldfarb
,
M.
, “
Real-Time Intent Recognition for a Powered Knee and Ankle Transfemoral Prosthesis
,”
Proceedings of the IEEE Tenth International Conference on Rehabilitation Robotics
, Noordwijk, The Netherlands, June 12–15, pp.
16
23
.10.1109/ICORR.2007.4428400
18.
Zhang
,
H.
,
2016
, “
Research on Quasi Sliding Mode Control of Powered Transfemoral Prosthesis
,” Master thesis,
Hebei University of Technology
, Tianjin, China.
19.
Zheng
,
H.
, and
Shen
,
X.
,
2015
, “
Design and Control of a Pneumatically Actuated Transtibial Prosthesis
,”
J. Bionic Eng.
,
12
(
2
), pp.
217
226
.10.1016/S1672-6529(14)60114-1
20.
Zheng
,
H.
, and
Shen
,
X.
,
2015
, “
A Pneumatically Actuated Transtibial Prosthesis
,”
ASME J. Med. Devices
,
9
(
3
), p.
30919
.10.1115/1.4030597
21.
Zheng
,
H.
, and
Shen
,
X.
, “
Sleeve Muscle Actuator and Its Application in Transtibial Prostheses
,”
IEEE International Conference on Rehabilitation Robotics
, Seattle, WA, June 24–26, pp.
1
5
.10.1109/ICORR.2013.6650444
22.
Driver
,
T.
, and
Shen
,
X.
,
2013
, “
Sleeve Muscle Actuator: Concept and Prototype Demonstration
,”
J. Bionic Eng.
,
10
(
2
), pp.
222
230
.10.1016/S1672-6529(13)60218-8
23.
Wang
,
X.
,
Li
,
R.
,
Fang
,
J.
,
Wang
,
S.
, and
Lin
,
C.
,
2018
, “
A Powered Ankle Prosthesis Driven by EHA Technique
,” 13th IEEE Conference on Industrial Electronics and Applications (
ICIEA
), Wuhan, China, May 31–June 2, pp.
1492
1497
.10.1109/ICIEA.2018.8397945
24.
Wang
,
X. J.
,
Li
,
R.-F.
,
Lin
,
C.
,
Fang
,
J.
, and
Wang
,
S.
,
2019
, “
Design of Active Ankle Pros-Thesis Based on Electro-Hydrostatic Actuation
,”
Chin. Hydraul. Pneumatics
, 43(
1
), pp.
26
31
.10.11832/j.issn.1000-4858.2019.01.005
25.
Fang
,
J.
,
Wang
,
X.
,
Li
,
R.
,
Wang
,
S.
, and
Wang
,
W.
,
2018
, “
Active Ankle Prosthesis Powered by Electrohydrostatic Actuation Technology: Design and Implementation
,”
CSAA/IET International Conference on Aircraft Utility Systems
, Guiyang, China, June 19–22, pp.
1170
1175
.10.1049/cp.2018.0177
26.
Yu
,
T.
,
Plummer
,
A.
,
Iravani
,
P.
, and
Bhatti
,
J.
,
2015
, “
The Design of a Powered Ankle Prosthesis With Electrohydrostatic Actuation
,”
ASME
Paper No. FPMC2015-9573.10.1115/FPMC2015-9573
27.
Yu
,
T.
,
Plummer
,
A.
,
Iravani
,
P.
,
Bhatti
,
J.
,
Zahedi
,
S.
, and
Moser
,
D.
,
2016
, “
The Design, Analysis and Testing of a Compact Electrohydrostatic Powered Ankle Prosthesis
,”
ASME
Paper No. FPMC2016-1770.10.1115/FPMC2016-1770
28.
Yu
,
T.
,
Plummer
,
A. R.
,
Iravani
,
P.
,
Bhatti
,
J.
,
Zahedi
,
S.
, and
Moser
,
D.
,
2019
, “
The Design, Control, and Testing of an Integrated Electrohydrostatic Powered Ankle Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
24
(
3
), pp.
1011
1022
.10.1109/TMECH.2019.2911685
29.
Luo
,
J.
,
2018
, “
Research on Artificial Active Ankle Based on Electrohydraulic Direct Drive Technology
,” Master thesis,
Harbin Institute of Technology
, Harbin, China.
30.
Woo
,
H.
,
Song
,
S-K.
,
Jeon
,
D.
, and
Kong
,
K.
,
2014
, “
Design of a Compact Hydraulic Actuation Mechanism for Active Ankle-Foot Prostheses
,” 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Besançon, France, July 8–11, pp.
275
278
.10.1109/AIM.2014.6878091
31.
Bartlett
,
H. L.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2017
, “
Design of a Power-Asymmetric Actuator for a Transtibial Prosthesis
,”
International Conference on Rehabilitation Robotics (ICORR) QEII Centre
, London, UK, July 17–20, pp.
1531
1536
.10.1109/ICORR.2017.8009465
32.
Bartlett
,
H. L.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2019
, “
Design, Control, and Preliminary Assessment of a Multifunctional Semipowered Ankle Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
24
(
4
), pp.
1532
1540
.10.1109/TMECH.2019.2918685
33.
LaPre
,
A.
, and
Sup
,
F.
,
2011
, “
A Semi-Active Damper Design for Use in a Terrain Adaptive Ankle Prosthesis
,”
ASME
Paper No. IMECE2011-65533.10.1115/IMECE2011-65533
34.
Wang
,
K.
,
2013
, “
Intelligent Prosthetic Knee Ankle Coordinated Control and Application
,” Master thesis,
Hebei University of Technology
, Tianjin, China.
35.
Scandaroli
,
G. G.
,
Borges
,
G. A.
,
da Rocha
,
A. F.
, and
de Oliveira Nascimento
,
F. A.
,
2008
, “
Adaptive Knee Joint Control for an Active Amputee Prosthesis
,”
IEEE Latin American Robotic Symposium
, Natal, Rio Grande do Norte, Brazil, Oct. 29–30, pp.
164
169
.10.1109/LARS.2008.12
36.
Mazumder
,
O.
,
Kundu
,
A.
,
Lenka
,
P.
, and
Bhaumik
,
S.
,
2017
, “
Design of Speed Adaptive Myoelectric Active Ankle Prosthesis
,”
Electron. Lett.
,
53
(
23
), pp.
1508
1510
.10.1049/el.2017.2828
37.
Holmberg
,
W. S. U.
,
2006
, “
An Autonomous Control System for a Prosthetic Foot Ankle
,”
IFAC Proc. Vol.
,
39
(
16
), pp.
856
861
.10.3182/20060912-3-DE-2911.00147
38.
Yuan
,
K.
,
Wang
,
Q.
,
Zhu
,
J.
, and
Wang
,
L.
,
2014
, “
A Hierarchical Control Scheme for Smooth Transitions Between Level Ground and Ramps With a Robotic Transtibial Prosthesis
,”
IFAC Proc. Volumes
,
47
(
3
), pp.
3527
3532
.10.3182/20140824-6-ZA-1003.02667
39.
Wang
,
Q.
,
Yuan
,
K.
,
Zhu
,
J.
, and
Wang
,
L.
,
2014
, “
Finite-State Control of a Robotic Transtibial Prosthesis With Motor-Driven Nonlinear Damping Behaviors for Level Ground Walking
,” IEEE 13th International Workshop on Advanced Motion Control (
AMC
), Yokohama, Japan, Mar. 14–16, pp.
155
160
.10.1109/AMC.2014.6823274
40.
Feng
,
Y.
, and
Wang
,
Q.
,
2017
, “
Combining Push-Off Power and Nonlinear Damping Behaviors for a Lightweight Motor-Driven Transtibial Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
22
(
6
), pp.
2512
2523
.10.1109/TMECH.2017.2766205
41.
Wang
,
Q.
,
Yuan
,
K.
,
Zhu
,
J.
, and
Wang
,
L.
,
2015
, “
Walk the Walk: A Lightweight Active Transtibial Prosthesis
,”
IEEE Rob. Autom. Mag.
,
22
(
4
), pp.
80
89
.10.1109/MRA.2015.2408791
42.
Xu
,
D.
,
Feng
,
Y.
,
Mai
,
J.
, and
Wang
,
Q.
,
2018
, “
On-Line Recognition of Push-Off for Powered Transtibial Prosthesis Towards Speed Adaptation
,”
Sci. Sin. Technol.
,
48
(
12
), pp.
1321
1330
.10.1360/N092018-00189
43.
Martin
,
J. H.
,
Parra
,
L.
,
Duran
,
L. E.
,
Posada
,
A.
, and
Meziat
,
P.
,
2018
, “
Ankle Design With Electromyographic Acquisition System for Transtibial Prosthesis
,” International Conference on System Science and Engineering (
ICSSE
), New Taipei, China, June 28–30, pp.
1
6
.10.1109/ICSSE.2018.8520069
44.
Quintero
,
D.
,
Villarreal
,
D. J.
, and
Gregg
,
R. D.
,
2016
, “
Preliminary Experiments With a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Daejeon, Korea, Oct. 9–14, pp.
5427
5433
.10.1109/IROS.2016.7759798
45.
Quintero
,
D.
,
Villarreal
,
D. J.
,
Lambert
,
D. J.
,
Kapp
,
S.
, and
Gregg
,
R. D.
,
2018
, “
Continuous-Phase Control of a Powered Knee–Ankle Prosthesis: Amputee Experiments Across Speeds and Inclines
,”
IEEE Trans. Rob.
,
34
(
3
), pp.
686
701
.10.1109/TRO.2018.2794536
46.
Wang
,
Z.
,
Shang
,
K.
,
Ruan
,
C.
,
Zhao
,
W.
, and
Guo
,
D.
,
2011
, “
Mechanical Design of Ankle Prosthesis
,”
China New Technol. Prod.
, 16(
2
), pp.
1
1
.
47.
Pan
,
G.
,
Wang
,
H.
, and
Dong
,
X.
,
2015
, “
Mechanical Design of Bionic Ankle Prosthesis
,”
J. Front. Med.,
5
(
21
), pp.
373
374
.
48.
Zhao
,
G.
,
Cao
,
S.
,
Shang
,
K.
,
Zhao
,
W.
,
Wang
,
Z.
, and
Guo
,
D.
,
2011
, “
Design of Powered Bionic Ankle Prosthesis
,”
Chin. J. Tissue Eng. Res.
,
15
(
17
), pp.
3044
3046
.
49.
Masum
,
H.
,
Bhaumik
,
S.
, and
Ray
,
R.
,
2014
, “
Conceptual Design of a Powered Ankle-Foot Prosthesis for Walking With Inversion and Eversion
,”
Procedia Technol.
,
14
, pp.
228
235
.10.1016/j.protcy.2014.08.030
50.
Liu
,
H.
,
Ceccarelli
,
M.
, and
Huang
,
Q.
,
2016
, “
Design and Simulation of a Cable-Pulley-Based Transmission for Artificial Ankle Joints
,”
Front. Mech. Eng.
,
11
(
2
), pp.
170
183
.10.1007/s11465-016-0383-0
51.
Liu
,
H.
,
Ceccarelli
,
M.
,
Huang
,
Q.
,
Guo
,
X.
,
She
,
H.
, and
Zhang
,
W.
,
2016
, “
A Cable-Pulley Transmission for Ankle Joint Actuation in Artificial Leg
,”
Advances in Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J.
Dai
, eds.,
Springer
,
Cham, Switzerland
, pp.
559
570
.
52.
Rad
,
N. F.
,
Yousefi-Koma
,
A.
,
Tajdari
,
F.
, and
Ayati
,
M.
,
2016
, “
Design of a Novel Three Degrees of Freedom Ankle Prosthesis Inspired by Human Anatomy
,” Fourth International Conference on Robotics and Mechatronics (
ICROM
), Tehran, Iran, Oct. 26–28, pp.
428
432
.10.1109/ICRoM.2016.7886776
53.
Azocar
,
A. F.
,
Mooney
,
L. M.
,
Hargrove
,
L. J.
, and
Rouse
,
E. J.
,
2018
, “
Design and Characterization of an Open-Source Robotic Leg Prosthesis
,” Seventh IEEE International Conference on Biomedical Robotics and Biomechatronics (
Biorob
), Enschede, The Netherlands, Aug. 26–29, pp.
111
118
.10.1109/BIOROB.2018.8488057
54.
Lawson
,
B. E.
,
Mitchell
,
J.
,
Truex
,
D.
,
Shultz
,
A.
,
Ledoux
,
E.
, and
Goldfarb
,
M.
,
2014
, “
A Robotic Leg Prosthesis: Design, Control, and Implementation
,”
IEEE Rob. Autom. Mag.
,
21
(
4
), pp.
70
81
.10.1109/MRA.2014.2360303
55.
Ficanha
,
E.
,
Dallali
,
H.
, and
Rastgaar
,
M.
,
2017
, “
Gait Emulator for Evaluation of a Powered Ankle-Foot Prosthesis
,”
ASME
Paper No. DSCC2017-5089.10.1115/DSCC2017-5089
56.
Ficanha
,
E.
,
Rastgaar Aagaah
,
M.
, and
Kaufman
,
K. R.
,
2016
, “
Cable-Driven Two Degrees-of-Freedom Ankle-Foot Prosthesis
,”
ASME J. Med. Devices
,
10
(
3
), p.
30902
.10.1115/1.4033734
57.
Ficanha
,
E. M.
,
Kang
,
R.
, and
Rastgaar
,
M.
,
2014
, “
Ankle Kinematics Describing Gait Agility: Considerations in the Design of an Agile Ankle-Foot Prosthesis
,” Fifth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (
BioRob
), São Paulo, Brazil, Aug. 12–15, pp.
132
137
.10.1109/BIOROB.2014.6913765
58.
Ficanha
,
E. M.
, and
Rastgaar
,
M.
,
2014
, “
Preliminary Design and Evaluation of a Multi-Axis Ankle-Foot Prosthesis
,” Fifth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (
BioRob
), São Paulo, Brazil, Aug. 12–15, pp.
1033
1038
.10.1109/BIOROB.2014.6913916
59.
Ficanha
,
E. M.
,
Rastgaar
,
M.
, and
Kaufman
,
K. R.
,
2014
, “
A Two-Axis Cable-Driven Ankle-Foot Mechanism
,”
Rob. Biomimetics
,
1
(
1
), p.
17
.10.1186/s40638-014-0017-0
60.
Ficanha
,
E. M.
,
Rastgaar
,
M.
, and
Kaufman
,
K. R.
,
2015
, “
Control of a 2-DOF Powered Ankle-Foot Mechanism
,” IEEE International Conference on Robotics and Automation (
ICRA
), Seattle, WA, May 26–30, pp.
6439
6444
.10.1109/ICRA.2015.7140103
61.
Ficanha
,
E. M.
,
Rastgaar
,
M.
,
Moridian
,
B.
, and
Mahmoudian
,
N.
,
2013
, “
Ankle Angles During Step Turn and Straight Walk: Implications for the Design of a Steerable Ankle-Foot Prosthetic Robot
,”
ASME
Paper No. DSCC2013-3782.10.1115/DSCC2013-3782
62.
Ficanha
,
E. M.
,
Ribeiro
,
G. A.
,
Dallali
,
H.
, and
Rastgaar
,
M.
,
2016
, “
Design and Preliminary Evaluation of a Two Dofs Cable-Driven Ankle–Foot Prosthesis With Active Dorsiflexion–Plantarflexion and Inversion–Eversion
,”
Front. Bioeng. Biotechnol.
,
4
, p.
36
.10.3389/fbioe.2016.00036
63.
Dallali
,
H.
,
Ficanha
,
E.
, and
Rastgaar Aagaah
,
M.
,
2016
, “
Dynamic Modeling of a 2-DOF Cable Driven Powered Ankle-Foot Prosthesis
,”
ASME
Paper No. DSCC2016-9706.10.1115/DSCC2016-9706
64.
Madusanka
,
D.
,
Wijayasingha
,
L.
,
Sanjeevan
,
K.
,
Ahamed
,
M.
,
Edirisooriya
,
J.
, and
Gopura
,
R.
,
2014
, “
A 3DOF Transtibial Robotic Prosthetic Limb
,”
Seventh International Conference on Information and Automation for Sustainability
, Colombo, Sri Lanka, Dec. 22–24, pp.
1
6
.10.1109/ICIAFS.2014.7069617
65.
Kennedy LaPrè
,
A.
,
Umberger
,
B. R.
, and
Sup
,
F. C.
,
2016
, “
A Robotic Ankle–Foot Prosthesis With Active Alignment
,”
ASME J. Med. Devices
,
10
(
2
), p.
025001
.10.1115/1.4032866
66.
LaPrè
,
A. K.
, and
Sup
,
F.
,
2013
, “
Redefining Prosthetic Ankle Mechanics: Non-Anthropomorphic Ankle Design
,”
IEEE International Conference on Rehabilitation Robotics
, Seattle, WA, June 24–26, pp.
1
5
.10.1109/ICORR.2013.6650439
67.
LaPrè
,
A. K.
,
Umberger
,
B. R.
, and
Sup
,
F.
,
2014
, “
Simulation of a Powered Ankle Prosthesis With Dynamic Joint Alignment
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Chicago, IL, Aug. 26–30, pp.
1618
1621
.10.1109/EMBC.2014.6943914
68.
LaPre
,
A. K.
,
Wedge
,
R. D.
,
Umberger
,
B. R.
, and
Sup
,
F. C.
,
2017
, “
Preliminary Study of a Robotic Foot-Ankle Prosthesis With Active Alignment
,” International Conference on Rehabilitation Robotics (
ICORR
), London, July 17–20, pp.
1299
1304
.10.1109/ICORR.2017.8009428
69.
Mattos
,
J. O.
,
Kane
,
E. D.
, and
Voglewede
,
P. A.
,
2007
, “
Active Component Lower Limb Prosthetic Device Research: Concept and Design
,”
ASME
Paper No. DETC2007-34768.10.1115/DETC2007-34768
70.
Bergelin
,
B. J.
,
2010
, “
Design of a Transtibial Prosthesis Utilizing Active and Passive Components in Conjunction With a Four-Bar Mechanism
,”
Master thesis
,
Marquette University
, Milwaukee, WI.https://www.researchgate.net/publication/45657116_Design_of_a_Transtibial_Prosthesis_Utilizing_Active_and_Passive_Components_in_Conjunction_with_a_Four-Bar_Mechanism
71.
Bergelin
,
B. J.
,
Mattos
,
J. O.
,
Wells
,
J. G.
, and
Voglewede
,
P. A.
,
2010
, “
Concept Through Preliminary Bench Testing of a Powered Lower Limb Prosthetic Device
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041005
.10.1115/1.4002205
72.
Bergelin
,
B. J.
, and
Voglewede
,
P. A.
,
2012
, “
Design of an Active Ankle-Foot Prosthesis Utilizing a Four-Bar Mechanism
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061004
.10.1115/1.4006436
73.
Sun
,
J.
,
Fritz
,
J. M.
,
Del Toro
,
D. R.
, and
Voglewede
,
P. A.
,
2014
, “
Amputee Subject Testing Protocol, Results, and Analysis of a Powered Transtibial Prosthetic Device
,”
ASME J. Med. Devices
,
8
(
4
), p.
41007
.10.1115/1.4027497
74.
Elery
,
T.
,
Rezazadeh
,
S.
,
Nesler
,
C.
,
Doan
,
J.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis With High-Torque, Low-Impedance Actuators
,” IEEE International Conference on Robotics and Automation (
ICRA
), Brisbane, Australia, May 21–25, pp.
2788
2795
.10.1109/ICRA.2018.8461259
75.
Dong
,
D.
,
Ge
,
W.
,
Liu
,
S.
,
Xia
,
F.
, and
Sun
,
Y.
,
2017
, “
Design and Optimization of a Powered Ankle-Foot Prosthesis Using a Geared Five-Bar Spring Mechanism
,”
Int. J. Adv. Rob. Syst.
,
14
(
3
), p.
1729881417704545
.10.1177/1729881417704545
76.
Cempini
,
M.
,
Hargrove
,
L. J.
, and
Lenzi
,
T.
, “
Design, Development, and Bench-Top Testing of a Powered Polycentric Ankle Prosthesis
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Vancouver, BC, Canada, Sept. 24–28, pp.
1064
1069
.10.1109/IROS.2017.8202276
77.
Sahoo
,
S.
,
Pratihar
,
D. K.
, and
Mukhopadhyay
,
S.
,
2018
, “
A Novel Energy Efficient Powered Ankle Prosthesis Using Four-Bar Controlled Compliant Actuator
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
24
), pp.
4664
4675
.10.1177/0954406217753461
78.
Lenzi
,
T.
,
Cempini
,
M.
,
Newkirk
,
J.
,
Hargrove
,
L. J.
, and
Kuiken
,
T. A.
, “
A Lightweight Robotic Ankle Prosthesis With Non-Backdrivable Cam-Based Transmission
,” International Conference on Rehabilitation Robotics (
ICORR
), London, July 17-20, pp.
1142
1147
.10.1109/ICORR.2017.8009403
79.
Lenzi
,
T.
,
Cempini
,
M.
,
Hargrove
,
L. J.
, and
Kuiken
,
T. A.
,
2019
, “
Design, Development, and Validation of a Lightweight Nonbackdrivable Robotic Ankle Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
24
(
2
), pp.
471
482
.10.1109/TMECH.2019.2892609
80.
Realmuto
,
J.
,
Klute
,
G.
, and
Devasia
,
S.
,
2013
, “
Nonlinear Passive Elements Using Cam-Based Springs for Powered Robotic Ankles
,”
ASME
Paper No. DSCC2013-3908.10.1115/DSCC2013-3908
81.
Realmuto
,
J.
,
Klute
,
G.
, and
Devasia
,
S.
,
2015
, “
Nonlinear Passive Cam-Based Springs for Powered Ankle Prostheses
,”
ASME J. Med. Devices
,
9
(
1
), p.
11007
.10.1115/1.4028653
82.
Realmuto
,
J.
,
Klute
,
G.
, and
Devasia
,
S.
,
2019
, “
Preliminary Investigation of Symmetry Learning Control for Powered Ankle-Foot Prostheses
,” Wearable Robotics Association Conference (
WearRAcon
), Scottsdale, AZ, Mar. 26–28, pp.
40
45
.10.1109/WEARRACON.2019.8719630
83.
Sathsara
,
A. P.
,
Widanage
,
K. N.
,
Sooriyaperakasam
,
N.
,
Ranaweera
,
R.
, and
Gopura
,
R.
,
2019
, “
A Hybrid Powering Mechanism for a Transtibial Robotic Prosthesis
,” Moratuwa Engineering Research Conference (
MERCon
), Moratuwa, Sri Lanka, July 3–5, pp.
447
453
.10.1109/MERCon.2019.8818842
84.
Gao
,
F.
,
Liu
,
Y.
, and
Liao
,
W.-H.
,
2018
, “
Design of Powered Ankle-Foot Prosthesis With Nonlinear Parallel Spring Mechanism
,”
ASME J. Mech. Des.
,
140
(
5
), p.
055001
.10.1115/1.4039385
85.
Gao
,
F.
,
Liu
,
Y.
, and
Liao
,
W.-H.
,
2019
, “
Implementation and Testing of Ankle-Foot Prosthesis With a New Compensated Controller
,”
IEEE/ASME Trans. Mechatronics
,
24
(
4
), pp.
1775
1784
.10.1109/TMECH.2019.2928892
86.
Gao
,
F.
,
Liu
,
Y.
, and
Liao
,
W.-H.
,
2016
, “
A New Powered Ankle-Foot Prosthesis With Compact Parallel Spring Mechanism
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics
, Qingdao, China, Dec. 3–7, pp.
473
478
.10.1109/ROBIO.2016.7866367
87.
Gao
,
F.
,
Liu
,
Y.
, and
Liao
,
W.-H.
,
2018
, “
Cam Profile Generation for Cam-Spring Mechanism With Desired Torque
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
41009
.10.1115/1.4040270
88.
Hitt
,
J. K.
,
Sugar
,
T. G.
,
Holgate
,
M.
, and
Bellman
,
R.
,
2010
, “
An Active Foot-Ankle Prosthesis With Biomechanical Energy Regeneration
,”
ASME J. Med. Devices
,
4
(
1
), p.
11003
.10.1115/1.4001139
89.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T.
, and
Goldfarb
,
M.
, “
Design and Control of an Active Electrical Knee and Ankle Prosthesis
,” Proceedings of the
Second IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
523
528
.10.1109/BIOROB.2008.4762811
90.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
14
(
6
), pp.
667
676
.10.1109/TMECH.2009.2032688
91.
Varol
,
H. A.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2008
, “
Real-Time Gait Mode Intent Recognition of a Powered Knee and Ankle Prosthesis for Standing and Walking
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
66
72
.10.1109/BIOROB.2008.4762860
92.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee
,”
IEEE 11th International Conference on Rehabilitation Robotics
, Kyoto, Japan, June 23–26, pp.
638
644
.10.1109/ICORR.2009.5209625
93.
Lawson
,
B. E.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Standing Stability Enhancement With an Intelligent Powered Transfemoral Prosthesis
,”
IEEE Trans. Biomed. Eng.
,
58
(
9
), pp.
2617
2624
.10.1109/TBME.2011.2160173
94.
Yin
,
K.
,
Pang
,
M.
,
Xiang
,
K.
,
Chen
,
J.
, and
Zhou
,
S.
,
2018
, “
Fuzzy Iterative Learning Control Strategy for Powered Ankle Prosthesis
,”
Int. J. Intell. Rob. Appl.
,
2
(
1
), pp.
122
131
.10.1007/s41315-018-0047-9
95.
Sun
,
X.
,
Sugai
,
F.
,
Okada
,
K.
, and
Inaba
,
M.
,
2018
, “
Design, Control and Preliminary Test of Robotic Ankle Prosthesis
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Madrid, Spain, Oct. 1–5, pp.
2787
2793
.10.1109/IROS.2018.8594498
96.
Bellman
,
R. D.
,
Holgate
,
M. A.
, and
Sugar
,
T. G.
,
2008
, “
SPARKy 3: Design of an Active Robotic Ankle Prosthesis With Two Actuated Degrees of Freedom Using Regenerative Kinetics
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
511
516
.10.1109/BIOROB.2008.4762887
97.
Zhu
,
J.
,
Wang
,
Q.
,
Li
,
X.
,
Sun
,
W.
,
She
,
H.
, and
Huang
,
Q.
, “
Importance of Series Elasticity in a Powered Transtibial Prosthesis With Ankle and Toe Joints
,”
Proceedings of the IEEE Conference on Robotics and Biomimetics
, Zhuhai, China, Dec. 6–9, pp.
541
546
.10.1109/ROBIO.2015.7418824
98.
Zhu
,
J.
,
Wang
,
Q.
, and
Wang
,
L.
,
2014
, “
Effects of Toe Stiffness on Ankle Kinetics in a Robotic Transtibial Prosthesis During Level-Ground Walking
,”
Mechatronics
,
24
(
8
), pp.
1254
1261
.10.1016/j.mechatronics.2014.06.005
99.
Zhu
,
J.
,
Wang
,
Q.
, and
Wang
,
L.
,
2013
, “
On the Design of a Powered Transtibial Prosthesis With Stiffness Adaptable Ankle and Toe Joints
,”
IEEE Trans. Ind. Electron.
,
61
(
9
), pp.
4797
4807
.10.1109/TIE.2013.2293691
100.
Zhu
,
J.
,
Wang
,
Q.
, and
Wang
,
L.
,
2010
, “
PANTOE 1: Biomechanical Design of Powered Ankle-Foot Prosthesis With Compliant Joints and Segmented Foot
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Montréal, Canada, July 6–9, pp.
31
36
.10.1109/AIM.2010.5695879
101.
Yuan
,
K.
,
Zhu
,
J.
,
Wang
,
Q.
, and
Wang
,
L.
,
2011
, “
Finite-State Control of Powered Below-Knee Prosthesis With Ankle and Toe
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
2865
2870
.10.3182/20110828-6-IT-1002.03064
102.
Zhao
,
H.
,
Ambrose
,
E.
, and
Ames
,
A. D.
,
2017
, “
Preliminary Results on Energy Efficient 3D Prosthetic Walking With a Powered Compliant Transfemoral Prosthesis
,” IEEE International Conference on Robotics and Automation (
ICRA
), Singapore, May 29–June 3, pp.
1140
1147
.10.1109/ICRA.2017.7989136
103.
Bhakta
,
K.
,
Camargo
,
J.
, and
Young
,
A. J.
,
2018
, “
Control and Experimental Validation of a Powered Knee and Ankle Prosthetic Device
,”
ASME
Paper No. DSCC2018-9218.10.1115/DSCC2018-9218
104.
Olson
,
N. M.
, and
Klute
,
G. K.
,
2015
, “
Design of a Transtibial Prosthesis With Active Transverse Plane Control
,”
ASME J. Med. Devices
,
9
(
4
), p.
45002
.10.1115/1.4031072
105.
Zhu
,
J.
,
She
,
H.
, and
Huang
,
Q.
,
2018
, “
PANTOE II: Improved Version of a Powered Transtibial Prosthesis With Ankle and Toe Joints
,”
ASME
Paper No. DMD2018-6942.10.1115/DMD2018-6942
106.
Hill
,
D.
, and
Herr
,
H.
,
2013
, “
Effects of a Powered Ankle-Foot Prosthesis on Kinetic Loading of the Contralateral Limb: A Case Series
,”
IEEE International Conference on Rehabilitation Robotics
, Seattle, WA, June 24–26, pp.
1
6
.10.1109/ICORR.2013.6650375
107.
Ottobock
,
2018
, “Empower,” Ottobock, Austin, TX, accessed Nov. 10, 2019, https://www.ottobockus.com/products/empower-ankle/
108.
Herr
,
H. M.
,
Han
,
Z.
,
Barnhart
,
C. E.
, and
Casler
,
R. J.
, Jr.
,
2015
, “Prosthetic, Orthotic or Exoskeleton Device,” Patent No. US 2015/0127118A1.
109.
Rouse
,
E. J.
,
Villagaray-Carski
,
N. C.
,
Emerson
,
R. W.
, and
Herr
,
H. M.
,
2015
, “
Design and Testing of a Bionic Dancing Prosthesis
,”
PLoS One
,
10
(
8
), p.
e0135148
.10.1371/journal.pone.0135148
110.
Cherelle
,
P.
,
Matthys
,
A.
,
Grosu
,
V.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2012
, “
The AMP-Foot 2.0: Mimicking Intact Ankle Behavior With a Powered Transtibial Prosthesis
,”
Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
, Roma, Italy, June 24–27, pp.
544
549
.10.1109/BioRob.2012.6290783
111.
Cherelle
,
P.
,
Grosu
,
V.
,
Matthys
,
A.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2014
, “
Design and Validation of the Ankle Mimicking Prosthetic (AMP-)Foot 2.0
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
1
), pp.
138
148
.10.1109/TNSRE.2013.2282416
112.
Cherelle
,
P.
,
Grosu
,
V.
,
Van Damme
,
M.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2013
, “
Use of Compliant Actuators in Prosthetic Feet and the Design of the AMP-Foot 2.0
,”
Modeling, Simulation and Optimization of Bipedal Walking
,
K.
Mombaur
, and
K.
Berns
, eds.,
Springer
,
Berlin
, pp.
17
30
.
113.
Grosu
,
S.
,
Cherelle
,
P.
,
Verheul
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2013
, “
AMP-Foot 2.0 Prosthesis Dynamic Behavior, Preliminary Computational Multibody Dynamics Simulation Results
,”
Proceedings of the ECCOMAS Thematic Conference on Multi-Body Dynamics
, Zagreb, Croatia, July 1–4.https://www.researchgate.net/publication/258023213_AMP-Foot_20_Prosthesis_Dynamic_Behavior_Preliminary_Computational_Multibody_Dynamics_Simulation_Results
114.
Grosu
,
S.
,
Cherelle
,
P.
,
Verheul
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2014
, “
Case Study on Human Walking During Wearing a Powered Prosthetic Device: Effectiveness of the System ‘Human-Robot
,’”
Adv. Mech. Eng.
,
6
, p.
365265
.10.1155/2014/365265
115.
Dong
,
D.
,
Ge
,
W.
,
Wang
,
J.
,
Sun
,
Y.
, and
Zhao
,
D.
,
2018
, “
Optimal Design and Analysis of a Powered Ankle-Foot Prosthesis With Adjustable Actuation Stiffness
,”
International Conference on Mechatronics and Intelligent Robotics, Kunming
, China, May 19–20, pp.
578
587
.10.1007/978-3-030-00214-5_73
116.
Cherelle
,
P.
,
Junius
,
K.
,
Grosu
,
V.
,
Cuypers
,
H.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2014
, “
The Amp-Foot 2.1: Actuator Design, Control and Experiments With an Amputee
,”
Robotica
,
32
(
8
), pp.
1347
1361
.10.1017/S026357471400229X
117.
Cherelle
,
P.
,
Grosu
,
V.
,
Cestari
,
M.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2016
, “
The AMP-Foot 3, New Generation Propulsive Prosthetic Feet With Explosive Motion Characteristics: Design and Validation
,”
Biomed. Eng. Online
, (
3
), p.
145
.10.1186/s12938-016-0285-8
118.
Cherelle
,
P.
,
Grosu
,
V.
,
Flynn
,
L.
,
Junius
,
K.
,
Moltedo
,
M.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2017
, “
The Ankle Mimicking Prosthetic Foot 3—Locking Mechanisms, Actuator Design, Control, and Experiments With an Amputee
,”
Rob. Auton. Syst.
,
91
, pp.
327
336
.10.1016/j.robot.2017.02.004
119.
Convens
,
B.
,
Dong
,
D.
,
Furnémont
,
R.
,
Verstraten
,
T.
,
Cherelle
,
P.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2019
, “
Modeling, Design and Test-Bench Validation of a Semi-Active Propulsive Ankle Prosthesis With a Clutched Series Elastic Actuator
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1823
1830
.10.1109/LRA.2019.2897993
120.
Grimmer
,
M.
,
Holgate
,
M.
,
Holgate
,
R.
,
Boehler
,
A.
,
Ward
,
J.
,
Hollander
,
K.
,
Sugar
,
T.
, and
Seyfarth
,
A.
,
2016
, “
A Powered Prosthetic Ankle Joint for Walking and Running
,”
Biomed. Eng. Online
,
15
(
Suppl. 3
), p.
141
.10.1186/s12938-016-0286-7
121.
Au
,
S. K.
,
Dilworth
,
P.
, and
Herr
,
H.
, “
An Ankle-Foot Emulation System for the Study of Human Walking Biomechanics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Orlando, FL, May 15–19, pp.
2939
2945
.10.1109/ROBOT.2006.1642148
122.
Han
,
Y.
,
Jia
,
S.
, and
Wang
,
X.
,
2013
, “
Design and Simulation of an Ankle Prosthesis With Lower Power Based on Human Biomechanics
,”
Robotica
,
35
(
3
), pp.
276
282
.10.3724/SP.J.1218.2013.00276
123.
Arteaga
,
O.
,
Escorza
,
J.
,
Medina
,
I.
,
Navas
,
R.
,
Amores
,
K.
, and
Morales
,
J. J.
,
2019
, “
Prototype of Robotic Ankle-Foot Prosthesis With Active Damping Using Magnetorheological Fluids
,”
Int. J. Mech. Eng. Rob. Res.
,
8
(
5
), pp.
753
758
.10.18178/ijmerr.8.5.753-758
124.
Serrano
,
H.
,
Luviano-Juárez
,
A.
, and
Chairez
,
I.
,
2014
, “
Robust Control of Semi-Active Ankle Prosthesis Driven by Electromyographic and Electro-Goniometric Signals
,”
VI Latin American Congress on Biomedical Engineering CLAIB
, Paraná, Argentina, Oct. 29–31, pp.
277
280
.10.1007/978-3-319-13117-7_72
125.
Serrano
,
H. L.
,
Chairez
,
I.
, and
Luviano‐Juárez
,
A. J. A. J. O C.
,
2020
, “
Composite Active Disturbance Rejection Robust Control for a Prototype of an Active Damping Artificial Ankle Prosthesis
,”
Asian J. Control
,
22
(
2
), pp.
908
916
.10.1002/asjc.2064
126.
Li
,
G.
,
2018
, “
Simulation of Artificial Limb Structure Design and Optimization of Control System Under Intelligence
,” Master thesis,
Harbin University of Science and Technology
, Harbin, China.
127.
Holgate
,
M. A.
,
2017
, “Active Compliant Parallel Mechanism,” Google Patents No. US 9,604,368 B2.
128.
Martinez
,
R. C.
,
Avitia
,
R. L.
,
Bravo
,
M. E.
, and
Reyna
,
M. A.
,
2014
, “
A Low Cost Design of Powered Ankle-Knee Prosthesis for Lower Limb Amputees
,” Proceedings of the International Conference on Biomedical Electronics and Devices (
BIODEVICES-2014
), ESEO, Angers, Loire Valley, France, Mar. 3–6, pp.
253
258
.10.5220/0004914402530258
129.
Shultz
,
A. H.
,
Mitchell
,
J. E.
,
Truex
,
D.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2013
, “
Preliminary Evaluation of a Walking Controller for a Powered Ankle Prosthesis
,” IEEE International Conference on Robotics and Automation (
ICRA
), Karlsruhe, Germany, May 6–10, pp.
4838
4843
.10.1109/ICRA.2013.6631267
130.
Shultz
,
A. H.
,
Mitchell
,
J. E.
,
Truex
,
D.
,
Lawson
,
B. E.
,
Ledoux
,
E.
, and
Goldfarb
,
M.
,
2014
, “
A Walking Controller for a Powered Ankle Prosthesis
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Chicago, IL, Aug. 26–30, pp.
6203
6206
.10.1109/EMBC.2014.6945046
131.
Shultz
,
A. H.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2016
, “
Variable Cadence Walking and Ground Adaptive Standing With A Powered Ankle Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
4
), pp.
495
505
.10.1109/TNSRE.2015.2428196
132.
Wu
,
M.
,
Thapa
,
S.
,
Haque
,
M. R.
, and
Shen
,
X.
,
2017
, “
Toward a Low-Cost Modular Powered Transtibial Prosthesis: Initial Prototype Design and Testing
,”
AMSE
Paper No. DMD2017-3504.10.1115/DMD2017-3504
133.
Gao
,
F.
,
Liao
,
W.-H.
,
Chen
,
B.
,
Ma
,
H.
, and
Qin
,
L.-Y.
,
2015
, “
Design of Powered Ankle-Foot Prosthesis Driven by Parallel Elastic Actuator
,” IEEE International Conference on Rehabilitation Robotics (
ICORR
), Singapore, Aug. 11–14, pp.
374
379
.10.1109/ICORR.2015.7281228
134.
Gardiner
,
J.
,
Bari
,
A. Z.
,
Kenney
,
L.
,
Twiste
,
M.
,
Moser
,
D.
,
Zahedi
,
S.
, and
Howard
,
D.
,
2017
, “
Performance of Optimized Prosthetic Ankle Designs That Are Based on a Hydraulic Variable Displacement Actuator (VDA)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
12
), pp.
2418
2426
.10.1109/TNSRE.2017.2763999
135.
Agboola-Dobson
,
A.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Biologically Inspired Design and Development of a Variable Stiffness Powered Ankle-Foot Prosthesis
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041012
.10.1115/1.4043603
136.
Au
,
S. K.
,
Herr
,
H.
,
Weber
,
J.
, and
Martinez-Villalpando
,
E. C.
,
2007
, “
Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation
,”
Proceedings of the 29th Annual International Conference of the IEEE EMBS
, Lyon, France, Aug. 23–26, pp.
3020
3026
.10.1109/IEMBS.2007.4352965
137.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2007
, “
Biomechanical Design of a Powered Ankle-Foot Prosthesis
,”
Proceedings of the IEEE Tenth International Conference on Rehabilitation Robotics
, Noordwijk, The Netherlands, June 12–15, pp.
298
303
.10.1109/ICORR.2007.4428441
138.
Au
,
S. K.
,
2007
, “
Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
139.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits
,”
Neural Networks
,
21
(
4
), pp.
654
666
.10.1016/j.neunet.2008.03.006
140.
Heidarzadeh
,
S.
,
Sharifi
,
M.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2019
, “
A Novel Robust Model Reference Adaptive Impedance Control Scheme for an Active Transtibial Prosthesis
,”
Robotica
,
37
(
9
), pp.
1562
1581
.10.1017/S0263574719000146
141.
Eilenberg
,
M. F.
,
Geyer
,
H.
, and
Herr
,
H.
,
2010
, “
Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
2
), pp.
164
173
.10.1109/TNSRE.2009.2039620
142.
Grabowski
,
A. M.
, and
D'Andrea
,
S.
,
2013
, “
Effects of a Powered Ankle-Foot Prosthesis on Kinetic Loading of the Unaffected Leg During Level-Ground Walking
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
49
.10.1186/1743-0003-10-49
143.
Herr
,
H. M.
, and
Grabowski
,
A. M.
,
2012
, “
Bionic Ankle–Foot Prosthesis Normalizes Walking Gait for Persons With Leg Amputation
,”
Proc. R. Soc. B
,
279
(
1728
), pp.
457
464
.10.1098/rspb.2011.1194
144.
Markowitz
,
J.
,
Krishnaswamy
,
P.
,
Eilenberg
,
M. F.
,
Endo
,
K.
,
Barnhart
,
C.
, and
Herr
,
H.
,
2011
, “
Speed Adaptation in a Powered Transtibial Prosthesis Controlled With a Neuromuscular Model
,”
Philos. Trans. R. Soc. B
,
366
(
1570
), pp.
1621
1631
.10.1098/rstb.2010.0347
145.
Ran
,
Y.
,
Cao
,
H.
, and
Zhu
,
J.
,
2014
, “
Model Design and Simulation for Powered Ankle-Foot Prosthesis
,”
Manuf. Autom.
,
36
(
11
), pp.
40
42
.
146.
Ran
,
Y.
,
2015
, “
Powered Ankle Joint Prosthesis Design and Control Research
,” Master thesis,
East China University of Science and Technology
, Shanghai, China.
147.
Li
,
B.
,
2013
, “
Research for a Serial-Elastic-Actuator Based Powered Ankle-Foot Mechanism
,” Master thesis,
East China University of Science and Technology
, Shanghai, China.
148.
Lv
,
R. A.
,
Cao
,
H.
,
Zhu
,
J.
, and
Chen
,
Z.
,
2018
, “
Hybrid Force/Position Control Research of Hybrid Active-Passive Powered Ankle-Foot Prosthesis
,”
J. East China Univ. Sci. Technol.
,
44
(
2
), pp.
283
288
.https://www.researchgate.net/publication/325957861_Hybrid_ForcePosition_Control_Research_of_Hybrid_Active-Pqssive_Powered_Ankle-Foot_Prosthesis
149.
Lv
,
R. A.
,
2018
, “
Research on Design and Control Method of Hybrid Powered Ankle-Foot Prosthesis
,” Master thesis,
East China University of Science and Technology
, Shanghai, China.
150.
Fu
,
A.
,
Fu
,
C.
,
Wang
,
K.
,
Zhao
,
D.
,
Chen
,
X.
, and
Chen
,
K.
,
2013
, “
The Key Parameter Selection in Design of an Active Electrical Transfemoral Prosthesis
,” Proceeding of the IEEE International Conference on Robotics and Biomimetics (
ROBIO
), Shenzhen, China, Dec. 12–14, pp.
1716
1721
.10.1109/ROBIO.2013.6739715
151.
Ahmed
,
M. H.
,
Wahid
,
F.
,
Ali
,
A.
,
Tiwana
,
M. I.
,
Iqbal
,
J.
, and
Lovell
,
N. H.
,
2015
, “
Actuator Design for Robotic Powered an Ankle-Foot Prosthesis
,” International Symposium on Bioelectronics and Bioinformatics (
ISBB
), Beijing, China, Oct. 14–17, pp.
136
139
.10.1109/ISBB.2015.7344942
152.
Au
,
S. K.
, and
Herr
,
H. M.
,
2008
, “
Powered Ankle-Foot Prosthesis
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
52
59
.10.1109/MRA.2008.927697
153.
Sha
,
H.
,
Li
,
J.
,
Li
,
W.
,
Zhang
,
H.
,
Hu
,
H.
,
Li
,
C.
, and
Guo
,
H.
,
2015
, “
Dynamic Analysis and Optimization for the Ankle Joint Prosthesis
,” IEEE International Conference on Rehabilitation Robotics (
ICORR
), Singapore, Aug. 11–14, pp.
283
288
.10.1109/ICORR.2015.7281213
154.
Sha
,
H.
,
2015
, “
Research on Foot-Ankle System of Hybrid Active-Passive Driving
,” Master thesis,
Suzhou University
, Suzhou, China.
155.
Lui
,
Z. W.
,
Awad
,
M. I.
,
Abouhossein
,
A.
,
Dehghani-Sanij
,
A. A.
, and
Messenger
,
N.
,
2015
, “
Virtual Prototyping of a Semi-Active Transfemoral Prosthetic Leg
,”
Proc. Inst. Mech. Eng., Part H
,
229
(
5
), pp.
350
361
.10.1177/0954411915581653
156.
Jimenez-Fabian
,
R.
,
Geeroms
,
J.
,
Flynn
,
L.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2017
, “
Reduction of the Torque Requirements of an Active Ankle Prosthesis Using a Parallel Spring
,”
Rob. Auton. Syst.
,
92
, pp.
187
196
.10.1016/j.robot.2017.03.011
157.
Jimenez-Fabian
,
R.
,
Flynn
,
L.
,
Geeroms
,
J.
,
Vitiello
,
N.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2015
, “
Sliding-Bar MACCEPA for a Powered Ankle Prosthesis
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
41011
.10.1115/1.4029439
158.
Geeroms
,
J.
,
Flynn
,
L.
,
Jimenez-Fabian
,
R.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Energetic Analysis and Optimization of a MACCEPA Actuator in an Ankle Prosthesis
,”
Auton. Robots
,
42
(
1
), pp.
147
158
.10.1007/s10514-017-9641-1
159.
Flynn
,
L.
,
Geeroms
,
J.
,
Jimenez-Fabian
,
R.
,
Heins
,
S.
,
Vanderborght
,
B.
,
Munih
,
M.
,
Molino Lova
,
R.
,
Vitiello
,
N.
, and
Lefeber
,
D.
,
2018
, “
The Challenges and Achievements of Experimental Implementation of an Active Transfemoral Prosthesis Based on Biological Quasi-Stiffness: The Cyberlegs Beta-Prosthesis
,”
Front. Neurorobot.
,
12
, p.
80
.10.3389/fnbot.2018.00080
160.
Shen
,
P.
,
Han
,
Y.
,
Zhu
,
S.
,
Chen
,
R.
,
Zhang
,
M.
, and
Wu
,
Z.
,
2019
, “
Design and Dynamics Analysis of a Powered Ankle Prosthesis
,”
Mod. Manuf. Eng.
, 40(
3
), pp.
115
120
.
161.
Versluys
,
R.
,
Van Ham
,
R.
,
Vanderniepen
,
I.
, and
Lefeber
,
D.
,
2009
, “
Successful Walking With a Biologically-Inspired Below-Knee Prosthesis
,”
IEEE 11th International Conference on Rehabilitation Robotics
, Kyoto, Japan, June 23–26, pp.
652
657
.10.1109/ICORR.2009.5209534
162.
Caputo
,
J. M.
, and
Collins
,
S. H.
,
2013
, “
An Experimental Robotic Testbed for Accelerated Development of Ankle Prostheses
,” IEEE International Conference on Robotics and Automation (
ICRA
), Karlsruhe, Germany, May 6–10, pp.
2645
2650
.10.1109/ICRA.2013.6630940
163.
Caputo
,
J. M.
, and
Collins
,
S. H.
,
2014
, “
A Universal Ankle–Foot Prosthesis Emulator for Human Locomotion Experiments
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
035002
.10.1115/1.4026225
164.
Xu
,
S.
,
Pang
,
M.
,
Tang
,
B.
, and
Xiang
,
K.
,
2018
, “
The Torque Control and Evaluation of the Ankle Prosthesis
,”
Proceeding of the IEEE International Conference on Information and Automation
, Wuyi Mountain, China, Aug. 11–13, pp.
991
996
.10.1109/ICInfA.2018.8812355
165.
Kim
,
M.
,
Chen
,
T.
,
Chen
,
T.
, and
Collins
,
S. H.
,
2018
, “
An Ankle-Foot Prosthesis Emulator With Control of Plantarflexion and Inversion-Eversion Torque
,”
IEEE Trans. Rob.
,
34
(
5
), pp.
1183
1194
.10.1109/TRO.2018.2830372
166.
Mathijssen
,
G.
,
Cherelle
,
P.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2013
, “
Concept of a Series-Parallel Elastic Actuator for a Powered Transtibial Prosthesis
,”
Actuators
,
2
(
3
), pp.
59
73
.10.3390/act2030059
167.
Jafari
,
A.
,
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2014
, “
A New Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
55
63
.10.1109/TMECH.2012.2218615
168.
Eslamy
,
M.
,
Grimmer
,
M.
, and
Seyfarth
,
A.
,
2012
, “
Effects of Unidirectional Parallel Springs on Required Peak Power and Energy in Powered Prosthetic Ankles: Comparison Between Different Active Actuation Concepts
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO
), Guangzhou, China, Dec. 11–14, pp.
2406
2412
.10.1109/ROBIO.2012.6491330
You do not currently have access to this content.