Abstract

Blood oxygenators, also known as artificial lungs, are widely used in cardiopulmonary bypass surgery to maintain physiologic oxygen (O2) and carbon dioxide (CO2) levels in blood, and also serve as respiratory assist devices to support patients with lung failure. The time- and cost-consuming method of trial and error is initially used to optimize the oxygenator design, and this method is followed by the introduction of the computational fluid dynamics (CFD) that is employed to reduce the number of prototypes that must be built as the design is optimized. The CFD modeling method, while having progress in recent years, still requires complex three-dimensional (3D) modeling and experimental data to identify the model parameters and validate the model. In this study, we sought to develop an easily implemented mathematical models to predict and optimize the performance (oxygen partial pressure/saturation, oxygen/carbon dioxide transfer rates, and pressure loss) of hollow fiber membrane-based oxygenators and this model can be then used in conjunction with CFD to reduce the number of 3D CFD iteration for further oxygenator design and optimization. The model parameters are first identified by fitting the model predictions to the experimental data obtained from a mock flow loop experimental test on a mini fiber bundle. The models are then validated through comparing the theoretical results with the experimental data of seven full-size oxygenators. The comparative analysis show that the model predictions and experimental results are in good agreement. Based on the verified models, the design curves showing the effects of parameters on the performance of oxygenators and the guidelines detailing the optimization process are established to determine the optimal design parameters (fiber bundle dimensions and its porosity) under specific system design requirements (blood pressure drop, oxygen pressure/saturation, oxygen/carbon dioxide transfer rates, and priming volume). The results show that the model-based optimization method is promising to derive the optimal parameters in an efficient way and to serve as an intermediate modeling approach prior to complex CFD modeling.

References

References
1.
Heron
,
M.
,
2018
, “Deaths: Leading Causes for 2016,”
Natl. Vital Stat. Syst.
,
67
(
6
), pp.
1
77
.https://pubmed.ncbi.nlm.nih.gov/30248017/
2.
Mockros
,
L. F.
, and
Leonard
,
R.
,
1985
, “Compact Cross-Flow Tubular Oxygenators,”
Trans. Am. Soc. Artif. Inter. Organs
,
31
(
1
), pp.
628
633
.https://journals.lww.com/asaiojournal/Citation/1985/31000/Compact_Cross_Flow_Tubular_Oxygenators.124.aspx
3.
Vaslef
,
S. N.
,
Cook
,
K. E.
,
Leonard
,
R. J.
,
Mockros
,
L. F.
, and
Anderson
,
R. W.
,
1994
, “Design and Evaluation of a New, Low Pressure Loss, Implantable Artificial Lung,”
ASAIO J.
,
40
(
3
), pp.
M522
M526
.10.1097/00002480-199407000-00055
4.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Anderson
,
R. W.
, and
Leonard
,
R. J.
,
1994
, “Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators,”
ASAIO J.
,
40
(
4
), pp.
990
996
.10.1097/00002480-199440040-00016
5.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Cook
,
K. E.
,
Leonard
,
R. J.
,
Sung
,
J. C.
, and
Anderson
,
R. W.
,
1994
, “Computer-Assisted Design of an Implantable, Intrathoracic Artificial Lung,”
Artif. Organs
,
18
(
11
), pp.
813
817
.10.1111/j.1525-1594.1994.tb03328.x
6.
Catapano
,
G.
,
Papenfuss
,
H. D.
,
Wodetzki
,
A.
, and
Baurmeister
,
U.
,
2001
, “Mass and Momentum Transport in Extra-Luminal Flow (ELF) Membrane Devices for Blood Oxygenation,”
J. Membr. Sci.
,
184
(
1
), pp.
123
135
.10.1016/S0376-7388(00)00615-3
7.
Dierickx
,
P. W.
,
De Somer
,
F.
,
De Wachter
,
D. S.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
,
2000
, “Hydrodynamic Characteristics of Artificial Lungs,”
ASAIO J.
,
46
(
5
), pp.
532
535
.10.1097/00002480-200009000-00004
8.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
,
De Somer
,
F.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
,
2001
, “Mass Transfer Characteristics of Artificial Lungs,”
ASAIO J.
,
47
(
6
), pp.
628
633
.10.1097/00002480-200111000-00012
9.
Matsuda
,
N.
, and
Sakai
,
K.
,
2000
, “Blood Flow and Oxygen Transfer Rate of an Outside Blood Flow Membrane Oxygenator,”
J. Membr. Sci.
,
170
(
2
), pp.
153
158
.10.1016/S0376-7388(00)00331-8
10.
Rajasubramanian
,
S.
,
Nelson
,
K. D.
,
Shastri
,
P.
,
Constantinescu
,
A.
,
Kulkarni
,
P.
,
Jessen
,
M. E.
, and
Eberhart
,
R. C.
,
1997
, “Design of an Oxygenator With Enhanced Gas Transfer Efficiency,”
ASAIO J.
,
43
(
5
), p.
M714
.10.1097/00002480-199709000-00077
11.
Wickramasinghe
,
S. R.
,
Goerke
,
A. R.
,
Garcia
,
J. D.
, and
Han
,
B.
,
2003
, “Designing Blood Oxygenators,”
Ann. New York Acad. Sci.
,
984
(
1
), pp.
502
514
.10.1111/j.1749-6632.2003.tb06023.x
12.
Wickramasinghe
,
S. R.
, and
Han
,
B.
,
2005
, “Designing Microporous Hollow Fibre Blood Oxygenators,”
Chem. Eng. Res. Des.
,
83
(
3
), pp.
256
267
.10.1205/cherd.04195
13.
Wickramasinghe
,
S. R.
,
Semmens
,
M. J.
, and
Cussler
,
E. L.
,
1992
, “Mass Transfer in Various Hollow Fiber Geometries,”
J. Membr. Sci.
,
69
(
3
), pp.
235
250
.10.1016/0376-7388(92)80042-I
14.
Baskaran
,
H.
,
Nodelman
,
V.
,
Ultman
,
J. S.
,
Richard
,
R. B.
,
Panol
,
G.
,
High
,
K. M.
, and
Snider
,
M. T.
,
1996
, “Small Intrapulmonary Artery Lung Prototypes Mathematical Modeling of Gas Transfer,”
ASAIO J.
,
42
(
5
), pp.
M597
M603
.10.1097/00002480-199609000-00058
15.
Hewitt
,
T. J.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
,
1998
, “A Mathematical Model of Gas Exchange in an Intravenous Membrane Oxygenator,”
Ann. Biomed. Eng.
,
26
(
1
), pp.
166
178
.10.1114/1.53
16.
Kanamori
,
T.
,
Niwa
,
M.
,
Kawakami
,
H.
,
Mori
,
Y.
,
Nagaoka
,
S.
,
Haraya
,
K.
, and
Shinbo
,
T.
,
2000
, “Estimate of Gas Transfer Rates of an Intravascular Membrane Oxygenator,”
ASAIO J.
,
46
(
5
), pp.
612
619
.10.1097/00002480-200009000-00021
17.
Gage
,
K. L.
,
2007
, “Development of Computational Mass and Momentum Transfer Models for Extracorporeal Hollow Fiber Membrane Oxygenators,”
Ph.D. thesis
, University of Pittsburgh, Pittsburgh, PA.http://d-scholarship.pitt.edu/id/eprint/6620
18.
Zhang
,
J.
,
Nolan
,
T. D. C.
,
Zhang
,
T.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2007
, “Characterization of Membrane Blood Oxygenation Devices Using Computational Fluid Dynamics,”
J. Membr. Sci.
,
288
(
1–2
), pp.
268
279
.10.1016/j.memsci.2006.11.041
19.
Zinovik
,
I. N.
, and
Federspiel
,
W. J.
,
2007
, “Modeling of Blood Flow in a Balloon-Pulsed Intravascular Respiratory Catheter,”
ASAIO J.
,
53
(
4
), pp.
464
468
.10.1097/MAT.0b013e31805fe96d
20.
Mazaheri
,
A. R.
, and
Ahmadi
,
G.
,
2006
, “Uniformity of the Fluid Flow Velocities Within Hollow Fiber Membranes of Blood Oxygenation Devices,”
Artif. Organs
,
30
(
1
), pp.
10
15
.10.1111/j.1525-1594.2006.00150.x
21.
Chen
,
Z.
,
Jena
,
S. K.
,
Giridharan
,
G. A.
,
Koenig
,
S. C.
,
Slaughter
,
M. S.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2018
, “Flow Features and Device-Induced Blood Trauma in CF-VADs Under a Pulsatile Blood Flow Condition: A CFD Comparative Study,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
2
), p.
e2924
.10.1002/cnm.2924
22.
Ergun
,
S.
,
1952
, “Fluid Flow Through Packed Columns,”
J. Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.http://dns2.asia.edu.tw/~ysho/YSHO-English/1000%20CE/PDF/Che%20Eng%20Pro48,%2089.pdf
23.
Jones
,
C. C.
,
McDonough
,
J. M.
,
Capasso
,
P.
,
Wang
,
D.
,
Rosenstein
,
K. S.
, and
Zwischenberger
,
J. B.
,
2013
, “Improved Computational Fluid Dynamic Simulations of Blood Flow in Membrane Oxygenators From X-Ray Imaging,”
Ann. Biomed. Eng.
,
41
(
10
), pp.
2088
2098
.10.1007/s10439-013-0824-4
24.
Svitek
,
R. G.
, and
Federspiel
,
W. J.
,
2008
, “A Mathematical Model to Predict CO2 Removal in Hollow Fiber Membrane Oxygenators,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
992
1003
.10.1007/s10439-008-9482-3
25.
Turri
,
F.
, and
Yanagihara
,
J. I.
,
2011
, “Computer-Assisted Numerical Analysis for Oxygen and Carbon Dioxide Mass Transfer in Blood Oxygenators,”
Artif. Organs
,
35
(
6
), pp.
579
592
.10.1111/j.1525-1594.2010.01150.x
26.
Manap
,
H. H.
,
Abdul Wahab
,
A. K.
, and
Zuki
,
F. M.
,
2017
, “Mathematical Modelling of Carbon Dioxide Exchange in Hollow Fiber Membrane Oxygenator,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
210
, p.
012003
.10.1088/1757-899X/210/1/012003
27.
Zhang
,
T.
,
Wei
,
X.
,
Bianchi
,
G.
,
Wong
,
P. M.
,
Biancucci
,
B.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “A Novel Wearable Pump-Lung Device: In Vitro and Acute In Vivo Study,”
J. Heart Lung Transpl.
,
31
(
1
), pp.
101
105
.10.1016/j.healun.2011.08.022
28.
Zhang
,
T.
,
Cheng
,
G.
,
Koert
,
A.
,
Zhang
,
J.
,
Gellman
,
B.
,
Yankey
,
G. K.
,
Satpute
,
A.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2009
, “Functional and Biocompatibility Performances of an Integrated Maglev Pump-Oxygenator,”
Artif. Organs
,
33
(
1
), pp.
36
45
.10.1111/j.1525-1594.2008.00672.x
29.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “Flow Through Porous Media-the Ergun Equation Revisited,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
199
208
.10.1021/i160071a001
30.
Leva
,
M.
,
1959
,
Fluidization
,
McGraw-Hill Book
,
New York
.
31.
J.A
,
L.
,
Luft
,
U. C.
, and
Fletcher
,
E. R.
,
1983
, “Quantitative Description of Whole Blood CO2 Dissociation Curve and Haldane Effect,”
Respir. Physiol.
,
51
(
2
), pp.
167
181
.10.1016/0034-5687(83)90038-5
32.
Zhang
,
J.
,
Taskin
,
M. E.
,
Koert
,
A.
,
Zhang
,
T.
,
Gellman
,
B.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2009
, “Computational Design and In Vitro Characterization of an Integrated Maglev Pump-Oxygenator,”
Artif. Organs
,
33
(
10
), pp.
805
817
.10.1111/j.1525-1594.2009.00807.x
33.
Chen
,
Z.
,
Jena
,
S. K.
,
Giridharan
,
G. A.
,
Sobieski
,
M. A.
,
Koenig
,
S. C.
,
Slaughter
,
M. S.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2019
, “Shear Stress and Blood Trauma Under Constant and Pulse-Modulated Speed CF-VAD Operations: CFD Analysis of the HVAD,”
Med. Biol. Eng. Comput.
,
57
(
4
), pp.
807
818
.10.1007/s11517-018-1922-0
34.
Pacella
,
H. E.
,
Eash
,
H. J.
,
Frankowski
,
B. J.
, and
Federspiel
,
W. J.
,
2011
, “Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices,”
J. Membr. Sci.
,
382
(
1–2
), pp.
238
242
.10.1016/j.memsci.2011.08.012
You do not currently have access to this content.