Abstract

Passive arm-assistive devices play an important role in the rehabilitation of patients with neuromuscular disorders or injuries by overcoming their motor deficit. Routine human activities such as feeding are not possible without the aid provided by one of these devices or by a caregiver. In this study, a body-powered assistive device was designed for feeding purposes using a compact spherical scissors mechanism and zero-free-length (ZFL) springs (rubber bands) to leverage the patient's residual biceps and healthy triceps function. This partially balanced and lightweight orthosis was also projected to accommodate the spring attachment points closer to the elbow joint center. The performance of the prototype was evaluated on a young adult with bilateral amyoplasia of the biceps due to arthrogryposis who could not initially reach the superior anterior aspect of the close-to-torso region of the reachable three-dimensional (3D) workspace (RWS). That was accomplished by measuring the anatomical RWS of the patient before and while wearing the device. The results show that the patient, with the assistance provided by the device, was able to attain positions in the frontal close-to-torso region of the body that included reaching her mouth, thus enabling independent feeding.

References

1.
Hall
,
J. G.
,
2014
, “
Arthrogryposis (Multiple Congenital Contractures): Diagnostic Approach to Etiology, Classification, Genetics, and General Principles
,”
Eur. J. Med Genet.
,
57
(
8
), pp.
464
472
.10.1016/j.ejmg.2014.03.008
2.
Bamshad
,
M.
,
Van Heest
,
A. E.
, and
Pleasure
,
D.
,
2009
, “
Arthrogryposis: A Review and Update
,”
J. Bone Jt. Surg. Am. Volume.
,
91
(
Suppl. 4
), p.
40
.10.2106/JBJS.I.00281
3.
Bevan
,
W. P.
,
Hall
,
J. G.
,
Bamshad
,
M.
,
Staheli
,
L. T.
,
Jaffe
,
K. M.
, and
Song
,
K.
,
2007
, “
Arthrogryposis Multiplex Congenita (Amyoplasia): An Orthopaedic Perspective
,”
J. Pediatr. Orthop.
,
27
(
5
), pp.
594
600
.10.1097/BPO.0b013e318070cc76
4.
Bernstein
,
R. M.
,
2002
, “
Arthrogryposis and Amyoplasia
,”
J. Am. Acad. Orthop. Surg.
,
10
(
6
), pp.
417
424
.10.5435/00124635-200211000-00006
5.
Bharucha
,
E.
,
Pandya
,
S.
, and
Dastur
,
D. K.
,
1972
, “
Arthrogryposis Multiplex Congenita: Part 1: Clinical and Electromyographic Aspects
,”
J. Neurol., Neurosurg. Psychiatry
,
35
(
4
), pp.
425
434
.10.1136/jnnp.35.4.425
6.
Gopura
,
R.
,
Kiguchi
,
K.
, and
Bandara
,
D.
,
2011
, “
A Brief Review on Upper Extremity Robotic Exoskeleton Systems
,”
Sixth IEEE International Conference on Industrial and Information Systems
(
ICIIS
), Kandy, Sri Lanka, Aug. 16–19, pp.
346
351
.10.1109/ICIINFS.2011.6038092
7.
Dunning
,
A.
, and
Herder
,
J.
,
2013
, “
A Review of Assistive Devices for Arm Balancing
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26, pp.
1
6
. 10.1109/ICORR.2013.6650485
8.
Rahman
,
T.
,
Stroud
,
S.
,
Ramanathan
,
R.
,
Alexander
,
M.
,
Seliktar
,
R.
, and
Harwin
,
W.
,
1996
, “
Task Priorities and Design for an Arm Orthosis
,”
Technol. Disability
,
5
(
2
), pp.
197
203
.10.3233/TAD-1996-5207
9.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception Design Statically
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.10.13140/RG.2.1.3942.8966
10.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
,
1995
, “
A Simple Technique to Passively Gravity-Balance Articulated Mechanisms
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
655
658
.10.1115/1.2826738
11.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2010
, “
A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1877
1891
.10.1016/j.mechmachtheory.2010.08.003
12.
Rahman
,
T.
,
Sample
,
W.
,
Jayakumar
,
S.
,
King
,
M. M.
,
Wee
,
J. Y.
,
Seliktar
,
R.
,
Alexander
,
M.
,
Scavina
,
M.
, and
Clark
,
A.
,
2006
, “
Passive Exoskeletons for Assisting Limb Movement
,”
J. Rehabil. Res. Dev.
,
43
(
5
), p.
583
.10.1682/JRRD.2005.04.0070
13.
Kooren
,
P. N.
,
Dunning
,
A. G.
,
Janssen
,
M. M.
,
Lobo-Prat
,
J.
,
Koopman
,
B. F.
,
Paalman
,
M. I.
,
de Groot
,
I. J.
, and
Herder
,
J. L.
,
2015
, “
Design and Pilot Validation of a-Gear: A Novel Wearable Dynamic Arm Support
,”
J. Neuroeng. Rehabil.
,
12
(
1
), p.
83
.10.1186/s12984-015-0072-y
14.
Jansen
,
M.
,
Burgers
,
J.
,
Jannink
,
M.
,
van Alfen
,
N.
, and
Groot
,
I.
,
2015
, “
Upper Limb Training With Dynamic Arm Support in Boys With Duchenne Muscular Dystrophy: A Feasibility Study
,”
Int. J. Phys. Med. Rehabil.
,
3
(2
), pp.
1
8
.10.4172/2329-9096.1000256
15.
Veer
,
S.
, and
Sujatha
,
S.
,
2015
, “
Approximate Spring Balancing of Linkages to Reduce Actuator Requirements
,”
Mech. Mach. Theory
,
86
, pp.
108
124
.10.1016/j.mechmachtheory.2014.11.014
16.
Zhou
,
L.
,
Bai
,
S.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2015
, “
Modeling and Design of a Spring-Loaded, Cable-Driven, Wearable Exoskeleton for the Upper Extremity
,”
Model., Identif. Control
,
36
(
3
), pp.
167
177
.10.4173/mic.2015.3.4
17.
Zhou
,
L.
,
Li
,
Y.
, and
Bai
,
S.
,
2017
, “
A Human-Centered Design Optimization Approach for Robotic Exoskeletons Through Biomechanical Simulation
,”
Rob. Auton. Syst.
,
91
, pp.
337
347
.10.1016/j.robot.2016.12.012
18.
Jensen
,
E. F.
,
Raunsbæk
,
J.
,
Lund
,
J. N.
,
Rahman
,
T.
,
Rasmussen
,
J.
, and
Castro
,
M. N.
,
2018
, “
Development and Simulation of a Passive Upper Extremity Orthosis for Amyoplasia
,”
J. Rehabil. Assistive Technol. Eng.
,
5
, pp.
1
10
.10.1177/2055668318761525
19.
Castro
,
M. N.
,
Rasmussen
,
J.
,
Bai
,
S.
, and
Andersen
,
M. S.
,
2019
, “
Validation of Subject-Specific Musculoskeletal Models Using the Anatomical Reachable 3d Workspace
,”
J. Biomech.
,
90
, pp.
92
102
.10.1016/j.jbiomech.2019.04.037
20.
Wee
,
J.
,
Shank
,
T. M.
,
Castro
,
M. N.
,
Ryan
,
L. E.
,
Costa
,
J.
, and
Rahman
,
T.
,
2019
, “
Elbow Flexion Assist Orthosis for Arthrogryposis
,” IEEE 16th International Conference on Rehabilitation Robotics (
ICORR
), Toronto, ON, Canada, June 24–28, pp.
494
498
10.1109/ICORR.2019.8779399.
21.
Castro
,
M. N.
,
Rasmussen
,
J.
,
Andersen
,
M. S.
, and
Bai
,
S.
,
2019
, “
A Compact 3-Dof Shoulder Mechanism Constructed With Scissors Linkages for Exoskeleton Applications
,”
Mech. Mach. Theory
,
132
, pp.
264
278
.10.1016/j.mechmachtheory.2018.11.007
22.
Castro
,
M. N.
,
Rasmussen
,
J.
,
Bai
,
S.
, and
Andersen
,
M. S.
,
2019
, “
The Reachable 3-d Workspace Volume is a Measure of Payload and Body-Mass-Index: A Quasi-Static Kinetic Assessment
,”
Appl. Ergonom.
,
75
, pp.
108
119
.10.1016/j.apergo.2018.09.010
23.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2013
, “
A Theoretical Study of Weight-Balanced Mechanisms for Design of Spring Assistive Mobile Arm Support (MAS)
,”
Mech. Mach. Theory
,
61
, pp.
156
167
.10.1016/j.mechmachtheory.2012.11.003
24.
Nikravesh
,
P. E.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
, Englewood Cliffs, NJ.https://dl.acm.org/doi/book/10.5555/33000
25.
De Zee
,
M.
,
Hansen
,
L.
,
Wong
,
C.
,
Rasmussen
,
J.
, and
Simonsen
,
E. B.
,
2007
, “
A Generic Detailed Rigid-Body Lumbar Spine Model
,”
J. Biomech.
,
40
(
6
), pp.
1219
1227
.10.1016/j.jbiomech.2006.05.030
26.
Van der Helm
,
F. C.
,
Veeger
,
H.
,
Pronk
,
G.
,
Van der Woude
,
L.
, and
Rozendal
,
R.
,
1992
, “
Geometry Parameters for Musculoskeletal Modelling of the Shoulder System
,”
J. Biomech.
,
25
(
2
), pp.
129
144
.10.1016/0021-9290(92)90270-B
27.
Veeger
,
H.
,
Yu
,
B.
,
An
,
K.-N.
, and
Rozendal
,
R.
,
1997
, “
Parameters for Modeling the Upper Extremity
,”
J. Biomech.
,
30
(
6
), pp.
647
652
.10.1016/S0021-9290(97)00011-0
28.
Veeger
,
H.
,
Van der Helm
,
F.
,
Van der Woude
,
L.
,
Pronk
,
G.
, and
Rozendal
,
R.
,
1991
, “
Inertia and Muscle Contraction Parameters for Musculoskeletal Modelling of the Shoulder Mechanism
,”
J. Biomech.
,
24
(
7
), pp.
615
629
.10.1016/0021-9290(91)90294-W
29.
Andersen
,
M. S.
,
Damsgaard
,
M.
,
MacWilliams
,
B.
, and
Rasmussen
,
J.
,
2010
, “
A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
171
183
.10.1080/10255840903067080
30.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.10.1080/10255840802459412
31.
Edelsbrunner
,
H.
, and
Mücke
,
E. P.
,
1994
, “
Three-Dimensional Alpha Shapes
,”
ACM Trans. Graph. (TOG)
,
13
(
1
), pp.
43
72
.10.1145/174462.156635
32.
Dunning
,
A.
, and
Herder
,
J.
,
2015
, “
A Close-to-Body 3-Spring Configuration for Gravity Balancing of the Arm
,” IEEE International Conference on Rehabilitation Robotics (
ICORR
), Singapore, Aug. 11–4, pp.
464
469
.10.1109/ICORR.2015.7281243
33.
Bergsma
,
A.
,
Lobo-Prat
,
J.
,
Vroom
,
E.
,
Furlong
,
P.
,
Herder
,
J. L.
,
Bergsma
,
A.
,
Corrigan
,
M.
,
de Groot
,
I.
,
Faisal
,
A.
,
Furlong
,
P.
,
Goemans
,
N.
,
Han
,
J.
,
Herder
,
J.
,
Iodice
,
M.
,
Kennedy
,
A.
,
Koopman
,
B.
,
Lobo Prat
,
J.
,
Main
,
M.
,
Mathie
,
B.
,
Muntoni
,
F.
,
Castro
,
M. N.
,
Paalman
,
M.
,
Porter
,
J.
,
Rahman
,
T.
,
Schneider
,
J.
,
Stienen
,
A.
,
Verstegen
,
P.
,
Vroom
,
E.
, and
Walsh
,
C.
,
2016
, “
First Workshop on Upper-Extremity Assistive Technology for People With Duchenne: State of the Art, Emerging Avenues, and Challenges: April 27th 2015, London, UK
,”
Neuromusc. Disorders
,
26
(
6
), pp.
386
393
.10.1016/j.nmd.2016.04.005
You do not currently have access to this content.