Abstract

Soft robotic devices have been proposed as an alternative solution for ventricular assistance. Unlike conventional ventricular assist devices (VADs) that pump blood through an artificial lumen, soft robotic VADs (SRVADs) use pneumatic artificial muscles (PAM) to assist native contraction and relaxation of the ventricle. Synchronization of SRVADs is critical to ensure maximized and physiologic cardiac output. We developed a proof-of-concept synchronization algorithm that uses an epicardial electrogram as an input signal and evaluated the approach on adult Yorkshire pigs (n = 2). An SRVAD previously developed by our group was implanted on the right ventricle (RV). We demonstrated an improvement in the synchronization of the SRVAD using an epicardial electrogram signal versus a RV pressure signal of 4 ± 0.5% in heart failure and 3.2 ± 0.5% during actuation for animal 1 and 7.4 ± 0.6% in heart failure and 8.2% ± 0.8% during actuation for animal 2. Results suggest that improved synchronization is translated in greater cardiac output. The pulmonary artery (PA) flow was restored to a 107% and 106% of the healthy baseline during RV electrogram actuation and RV pressure actuation, respectively, in animal 1, and to a 100% and 87% in animal 2. Therefore, the presented system using the RV electrogram signal as a control input has shown to be superior in comparison with the use of the RV pressure signal.

References

References
1.
Timms
,
D.
,
2011
, “
A Review of Clinical Ventricular Assist Devices
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1041
1047
.10.1016/j.medengphy.2011.04.010
2.
Bonacchi
,
M.
,
Harmelin
,
G.
,
Bugetti
,
M.
, and
Sani
,
G.
,
2015
, “
Mechanical Ventricular Assistance as Destination Therapy for End-Stage Heart Failure: Has It Become a First Line Therapy?
,”
Front. Surg.
,
2
, p.
35
.10.3389/fsurg.2015.00035
3.
Goldstein
,
D. J.
,
Aaronson
,
K. D.
,
Tatooles
,
A. J.
,
Silvestry
,
S. C.
,
Jeevanandam
,
V.
,
Gordon
,
R.
,
Hathaway
,
D. R.
,
Najarian
,
K. B.
, and
Slaughter
,
M. S.
,
2015
, “
Gastrointestinal Bleeding in Recipients of the HeartWare Ventricular Assist System
,”
JACC Hear. Fail.
,
3
(
4
), pp.
303
313
.10.1016/j.jchf.2014.11.008
4.
Roche
,
E. T.
,
Wohlfarth
,
R.
,
Overvelde
,
J. T. B.
,
Vasilyev
,
N. V.
,
Pigula
,
F. A.
,
Mooney
,
D. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2014
, “
A Bioinspired Soft Actuated Material
,”
Adv. Mater.
,
26
(
8
), pp.
1200
1206
.10.1002/adma.201304018
5.
Park
,
E.
,
Mehandru
,
N.
,
Lievano Beltran
,
T.
,
Kraus
,
E.
,
Holland
,
D.
,
Polygerinos
,
P.
,
Vasilyev
,
N. V.
, and
Walsh
,
C.
,
2014
, “
An Intraventricular Soft Robotic Pulsatile Assist Device for Right Ventricular Heart Failure
,”
ASME J. Med. Devices
,
8
(
2
), p.
020909
. 10.1115/1.4027008
6.
Horvath
,
M. A.
,
Wamala
,
I.
,
Rytkin
,
E.
,
Doyle
,
E.
,
Payne
,
C. J.
,
Thalhofer
,
T.
,
Berra
,
I.
,
Solovyeva
,
A.
,
Saeed
,
M.
,
Hendren
,
S.
,
Roche
,
E. T.
,
del Nido
,
P. J.
,
Walsh
,
C. J.
, and
Vasilyev
,
N. V.
,
2017
, “
An Intracardiac Soft Robotic Device for Augmentation of Blood Ejection From the Failing Right Ventricle
,”
Ann. Biomed. Eng.
,
45
(
9
), pp.
2222
2233
.10.1007/s10439-017-1855-z
7.
Payne
,
C. J.
,
Wamala
,
I.
,
Bautista-Salinas
,
D.
,
Saeed
,
M.
,
Van Story
,
D.
,
Thalhofer
,
T.
,
Horvath
,
M. A.
,
Abah
,
C.
,
del Nido
,
P. J.
,
Walsh
,
C. J.
, and
Vasilyev
,
N. V.
,
2017
, “
Soft Robotic Ventricular Assist Device With Septal Bracing for Therapy of Heart Failure
,”
Sci. Robot.
,
2
(
12
), p.
eaan6736
.10.1126/scirobotics.aan6736
8.
Wamala
,
I.
,
Payne
,
C. J.
,
Saeed
,
M.
,
Bautista-Salinas
,
D.
,
Van-Story
,
D.
,
Thalhofer
,
T.
,
Horvath
,
M.
,
Ramirez-Barbieri
,
G.
,
Staffa
,
S. J.
,
Zurakowski
,
D.
,
Ghelani
,
S. J.
,
del Nido
,
P. J.
,
Walsh
,
C. J.
, and
Vasilyev
,
N. V.
,
2018
, “
Augmentation of Right Ventricular Ejection Against Elevated Afterloads Using a Novel Soft Robotic Device
,”
J. Hear. Lung Transplant.
,
37
(
4
), pp.
S260
S261
.10.1016/j.healun.2018.01.651
9.
Saeed
,
M. Y.
,
Van Story
,
D.
,
Payne
,
C. J.
,
Wamala
,
I.
,
Shin
,
B.
,
Bautista-Salinas
,
D.
,
Zurakowski
,
D.
,
del Nido
,
P. J.
,
Walsh
,
C. J.
, and
Vasilyev
,
N. V.
,
2020
, “
Dynamic Augmentation of Left Ventricle and Mitral Valve Function With an Implantable Soft Robotic Device
,”
JACC Basic Transl. Sci.
,
5
(
3
), pp.
229
242
.10.1016/j.jacbts.2019.12.001
10.
Roche
,
E. T.
,
Horvath
,
M. A.
,
Wamala
,
I.
,
Alazmani
,
A.
,
Song
,
S.-E.
,
Whyte
,
W.
,
Machaidze
,
Z.
,
Payne
,
C. J.
,
Weaver
,
J. C.
,
Fishbein
,
G.
,
Kuebler
,
J.
,
Vasilyev
,
N. V.
,
Mooney
,
D. J.
,
Pigula
,
F. A.
, and
Walsh
,
C. J.
,
2017
, “
Soft Robotic Sleeve Supports Heart Function
,”
Sci. Transl. Med.
,
9
(
373
), p.
eaaf3925
.10.1126/scitranslmed.aaf3925
11.
Payne
,
C. J.
,
Wamala
,
I.
,
Abah
,
C.
,
Thalhofer
,
T.
,
Saeed
,
M.
,
Bautista-Salinas
,
D.
,
Horvath
,
M. A.
,
Vasilyev
,
N. V.
,
Roche
,
E. T.
,
Pigula
,
F. A.
, and
Walsh
,
C. J.
,
2017
, “
An Implantable Extracardiac Soft Robotic Device for the Failing Heart: Mechanical Coupling and Synchronization
,”
Soft Robot.
,
4
(
3
), pp.
241
250
.10.1089/soro.2016.0076
12.
Fresiello
,
L.
,
Trivella
,
M. G.
,
Di Molfetta
,
A.
,
Ferrari
,
G.
,
Bernini
,
F.
, and
Meste
,
O.
,
2015
, “
The Relationship Between R-Wave Device Assistance: Experimental Study
,”
Artif. Organs
,
39
(
5
), pp.
446
450
.10.1111/aor.12407
13.
Amacher
,
R.
,
Ochsner
,
G.
,
Ferreira
,
A.
,
Vandenberghe
,
S.
, and
Daners
,
M. S.
,
2013
, “
A Robust Reference Signal Generator for Synchronized Ventricular Assist Devices
,”
IEEE Trans. Biomed. Eng.,
60
(
8
), pp.
2174
2183
.10.1109/TBME.2013.2251634
14.
Amacher
,
R.
,
Weber
,
A.
,
Brinks
,
H.
,
Axiak
,
S.
,
Ferreira
,
A.
,
Guzzella
,
L.
,
Carrel
,
T.
,
Antaki
,
J.
, and
Vandenberghe
,
S.
,
2013
, “
Control of Ventricular Unloading Using an Electrocardiogram-Synchronized Thoratec Paracorporeal Ventricular Assist Device
,”
J. Thorac. Cardiovasc. Surg.
,
146
(
3
), pp.
710
717
.10.1016/j.jtcvs.2012.12.048
15.
Hirohashi
,
Y.
,
Tanaka
,
A.
,
Yoshizawa
,
M.
,
Sugita
,
N.
,
Abe
,
M.
,
Kato
,
T.
,
Shiraishi
,
Y.
,
Miura
,
H.
, and
Yambe
,
T.
,
2016
, “
Sensorless Cardiac Phase Detection for Synchronized Control of Ventricular Assist Devices Using Nonlinear Kernel Regression Model
,”
J. Artif. Organs
,
19
(
2
), pp.
114
120
.10.1007/s10047-015-0880-7
16.
Ishii
,
K.
,
Saito
,
I.
,
Isoyama
,
T.
,
Nakagawa
,
H.
,
Emiko
,
N.
,
Ono
,
T.
,
Shi
,
W.
,
Inoue
,
Y.
, and
Abe
,
Y.
,
2012
, “
Development of Normal-Suction Boundary Control Method Based on Inflow Cannula Pressure Waveform for the Undulation Pump Ventricular Assist Device
,”
Artif. Organs
,
36
(
9
), pp.
1525
1594
.10.1111/j.1525-1594.2012.01451.x
17.
Komorowski
,
D.
,
Malcher
,
A.
, and
Pietraszek
,
S.
,
2013
, “
Hybrid System of ECG Signal Acquisition and QRS Complexes Detection for Special Medical Devices Sychronization
,”
J. Med. Inf. Technol.
,
22
, pp.
227
234
.https://www.semanticscholar.org/paper/Hybrid-system-of-ECG-signal-acquisition-and-QRS-for-Komorowski-Malcher/1c7c938f3af0bab349725d60749f88943ca71988
18.
Anstadt
,
M. P.
,
Schulte-Eistrup
,
S. A.
,
Motomura
,
T.
,
Soltero
,
E. R.
,
Takano
,
T.
,
Mikati
,
I. A.
,
Nonaka
,
K.
,
Joglar
,
F.
, and
Nosé
,
Y.
,
2002
, “
Non-Blood Contacting Biventricular Support for Severe Heart Failure
,”
Ann. Thorac. Surg.
,
73
(
2
), pp.
556
562
.10.1016/S0003-4975(01)03467-1
19.
Meir Rosenberg
,
N.
,
Robert
,
T. W.
, and
Kung
,
A.
,
1998
, “
Extra Cardiac Ventricular Assist Device
,” Patent No.
US5713954A
. https://patents.google.com/patent/US5713954A/en
20.
Wang
,
S.
,
Izer
,
J. M.
,
Clark
,
J. B.
,
Patel
,
S.
,
Pauliks
,
L.
,
Kunselman
,
A. R.
,
Leach
,
D.
,
Cooper
,
T. K.
,
Wilson
,
R. P.
, and
Ündar
,
A.
,
2015
, “
In Vivo Hemodynamic Performance Evaluation of Novel Electrocardiogram-Synchronized Pulsatile and Nonpulsatile Extracorporeal Life Support Systems in an Adult Swine Model
,”
Artif. Organs
, 39(7), pp. E90-E101.10.1111/aor.12482
21.
Kitamura
,
M.
,
Hanzawa
,
K.
,
Aoki
,
K.
,
Saitoh
,
M.
, and
Hayashi
,
J.-I.
,
2001
, “
Direct Cardiac Potential Trigger for Chronic Control of a Ventricular Assist Device
,”
ASAIO J.
,
47
(
3
), pp.
302
304
.10.1097/00002480-200105000-00028
22.
Park
,
S. M.
,
Lee
,
J. H.
, and
Choi
,
S. W.
,
2014
, “
Detection of Premature Ventricular Contractions on a Ventricular Electrocardiogram for Patients With Left Ventricular Assist Devices
,”
Artif. Organs,
38
(
12
), pp.
1040
1046
.10.1111/aor.12306
23.
Her
,
K.
,
Ahn
,
C. B.
,
Park
,
S. M.
, and
Choi
,
S. W.
,
2015
, “
Heart Monitoring Using Left Ventricle Impedance and Ventricular Electrocardiography in Left Ventricular Assist Device Patients
,”
Biomed. Eng. Online
, 14, pp.
14
25
.10.1186/s12938-015-0019-3
24.
Yomtov
,
B. M.
,
2018
, “
Blood Pump for Treatment of Bradycardia
,” Patent No. U.S. 2018/0021496 A1.
25.
Kantrowitz
,
A.
,
Tjønneland
,
S.
,
Krakauer
,
J. S.
,
Phillips
,
S. J.
,
Freed
,
P. S.
, and
Butner
,
A. N.
,
1968
, “
Mechanical Intraaortic Cardiac Assistance in Cardiogenic Shock: Hemodynamic Effects
,”
Arch. Surg.
,
97
(
6
), pp.
1000
1004
.10.1001/archsurg.1968.01340060178021
26.
Webster
,
J. G.
, and
Clark
,
J. W.
,
1978
,
Medical Instrumentation: Application and Design
,
Houghton Mifflin
, Boston, MA.
27.
Payne
,
C. J.
,
Story
,
D. V.
,
Bautista-Salinas
,
D.
,
Saeed
,
M.
,
Thalhofer
,
T.
,
del Nido
,
P. J.
,
Walsh
,
C. J.
, and
Vasilyev
,
N. V.
,
2019
, “
Variable Contraction Timing for a Soft Robotic Cardiac Assist Device
,”
Hamlyn Symposium on Medical Robotics
, London, UK, June 23–26, pp.
1
2
.10.31256/HSMR2019.1
You do not currently have access to this content.