Abstract

Novel catheter-based medical procedures targeting heart valve structures are currently under development. These techniques entail installing a prosthetic implant on valves inside a beating heart. The development of these approaches requires a simple and effective validation test bed. Current early process testing methods rely on both static and dynamically pressurized excised porcine hearts. The variability between excised-tissue mechanical properties poses problems of reproducibility. In addition, these test beds do not emulate annulus motion, which affects the implant installation. A reproducible phantom of the left atrioventricular chambers was developed. The system consists of a hydraulic constant flow arrangement and a polyvinyl alcohol phantom heart with material properties that mimic passive myocardium mechanical properties and annulus motion. The system was then used to emulate blood flow through an actual heart. The building process starts by obtaining an accurate computer-aided design (CAD) model of a human heart, from which, a mold is produced using a novel rapid-freezing prototyping method and computer numerical control machining. The phantom is then cast-out of polyvinyl alcohol (PVA), a hydrogel, whose mechanical properties are set by subjecting the phantom to freeze and thaw cycles. Subsequently, blood flow is emulated at a constant volumetric rate at the atrial pressure observed in a healthy adult human heart at rest. The annulus motion is implemented by suturing the outside of the phantom to a one-degree-of-freedom cam-follower mechanism reproducing valve motion. Such test beds could play a significant role in future development of medical devices.

References

References
1.
Xu
,
J.
,
Murphy
,
S.
,
Kochanek
,
K.
, and
Bastian
,
B.
,
2012
, “
Deaths: Preliminary Data for 2013
,”
Natl. Vital Stat. Rep.
,
64
(
2
), p.
6
.
2.
Nkomo
,
V. T.
,
Gardin
,
J. M.
,
Skelton
,
T. N.
,
Gottdiener
,
J. S.
,
Scott
,
C. G.
, and
Enriquez-Sarano
,
M.
,
2006
, “
Burden of Valvular Heart Diseases: A Population-Based Study
,”
Lancet
,
368
(
9540
), pp.
1005
1011
.10.1016/S0140-6736(06)69208-8
3.
Arita
,
M.
,
Tono
,
S.
,
Kasegawa
,
H.
, and
Umezu
,
M.
,
2004
, “
Multiple Purpose Simulator Using a Natural Porcine Mitral Valve
,”
Asian Cardiovasc. Thorac. Ann.
,
12
(
4
), pp.
350
356
.10.1177/021849230401200415
4.
Richards
,
A.
,
Cook
,
R.
,
Bolotin
,
G.
, and
Buckner
,
G.
,
2009
, “
A Dynamic Heart System to Facilitate the Development of Mitral Valve Repair Techniques
,”
Ann. Biomed. Eng.
,
37
(
4
), pp.
651
660
.10.1007/s10439-009-9653-x
5.
Langendorff
,
O.
,
1895
, “
Untersuchungen Am Berleben- Den Sugetierherzen
,”
Pflgers Arch.
,
61
(
6
), pp.
291
332
.10.1007/BF01812150
6.
Yuen
,
S. G.
,
Kettler
,
D. T.
,
Novotny
,
P. M.
,
Plowes
,
R. D.
, and
Howe
,
R. D.
,
2009
, “
Robotic Motion Compensation for Beating Heart Intracardiac Surgery
,”
Int. J. Rob. Res.
,
28
(
10
), pp.
1355
1372
.10.1177/0278364909104065
7.
Pazos
,
V.
,
Mongrain
,
R.
, and
Tardif
,
J. C.
,
2009
, “
Polyvinyl Alcohol Cryogel: Optimizing the Parameters of Cryogenic Treatment Using Hyperelastic Models
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
5
), pp.
542
549
.10.1016/j.jmbbm.2009.01.003
8.
Pereira
,
J. J.
,
Balaban
,
K.
,
Lauer
,
M. S.
,
Lytle
,
B.
,
Thomas
,
J. D.
, and
Garcia
,
M. J.
,
2005
, “
Aortic Valve Replacement in Patients With Mild or Moderate Aortic Stenosis and Coronary Bypass Surgery
,”
Am. J. Med.
,
118
(
7
), pp.
735
742
.10.1016/j.amjmed.2005.01.072
9.
Jimenez
,
J. H.
,
Soerensen
,
D. D.
,
He
,
Z.
,
He
,
S.
, and
Yoganathan
,
A. P.
,
2003
, “
Effects of a Saddle Shaped Annulus on Mitral Valve Function and Chordal Force Distribution: An In Vitro Study
,”
Ann. Biomed. Eng.
,
31
(
10
), pp.
1171
1181
.10.1114/1.1616929
10.
Barnett
,
E.
,
Angeles
,
J.
,
Pasini
,
D.
, and
Sijpkes
,
P.
,
2009
, “
Robot-Assisted Rapid Prototyping for Ice Structures
,”
IEEE Int. Conf. Rob. Autom.
,
31
(
10
), pp.
146
151
.10.1109/ROBOT.2009.5152317
11.
Lang
,
R. M.
,
Badano
,
L. P.
,
Mor-Avi
,
V.
,
Afilalo
,
J.
,
Armstrong
,
A.
,
Ernande
,
L.
,
Flachskampf
,
F. A.
,
Foster
,
E.
,
Goldstein
,
S. A.
,
Kuznetsova
,
T.
,
Lancellotti
,
P.
,
Muraru
,
D.
,
Picard
,
M. H.
,
Rietzschel
,
E. R.
,
Rudski
,
L.
,
Spencer
,
K. T.
,
Tsang
,
W.
, and
Voigt
,
J.-U.
,
2015
, “
Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update From the American Society of Echocardiography and the European Association of Cardiovascular Imaging
,”
J. Am. Soc. Echocardiogr.
,
28
(
1
), pp.
1
39
.10.1016/j.echo.2014.10.003
12.
Rosenquist
,
G. C.
,
Sweeney
,
L. J.
,
Ruckman
,
R. N.
, and
McAllister
,
H. A.
,
1979
, “
Atrial Septal Thickness and Area in Normal Heart Specimens and in Those With Ostium Secundum Atrial Septal Defects
,”
J. Clin. Ultrasound
,
7
(
5
), pp.
345
348
.10.1002/jcu.1870070503
13.
Demer
,
L. L.
, and
Yin
,
F. C.
,
1983
, “
Passive Biaxial Mechanical Properties of Isolated Canine Myocardium
,”
J. Physiol.
,
339
(
1
), pp.
615
630
.10.1113/jphysiol.1983.sp014738
14.
Novak
,
V. P.
,
Yin
,
F. C. P.
, and
Humphrey
,
J. D.
,
1994
, “
Regional Mechanical Properties of Passive Myocardium
,”
J. Biomech.
,
27
(
4
), pp.
403
412
.10.1016/0021-9290(94)90016-7
15.
Ghaemi
,
H.
,
Behdinan
,
K.
, and
Spence
,
A. D.
,
2009
, “
In Vitro Technique in Estimation of Passive Mechanical Properties of Bovine Heart—Part I: Experimental Techniques and Data
,”
Med. Eng. Phys.
,
31
(
1
), pp.
76
82
.10.1016/j.medengphy.2008.04.008
16.
Hassan
,
C. M.
, and
Peppas
,
N. A.
,
2000
, “
Structure and Applications of Poly(Vinyl Alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods
,”
Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites
, Vol.
153
,
Springer
,
Berlin, Heidelberg
.10.1007/3-540-46414-X_2
17.
Wan
,
W. K.
,
Campbell
,
G.
,
Zhang
,
Z. F.
,
Hui
,
A. J.
, and
Boughner
,
D. R.
,
2002
, “
Optimizing the Tensile Properties of Polyvinyl Alcohol Hydrogel for the Construction of a Bioprosthetic Heart Valve Stent
,”
J. Biomed. Mater. Res.
,
63
(
6
), pp.
854
861
.10.1002/jbm.10333
18.
Millon
,
L. E.
,
Mohammadi
,
H.
, and
Wan
,
W. K.
,
2006
, “
Anisotropic Polyvinyl Alcohol Hydrogel for Cardiovascular Applications
,”
J. Biomed. Mater. Res. Part B
,
79B
(
2
), pp.
305
311
.10.1002/jbm.b.30543
19.
Chu
,
K. C.
, and
Rutt
,
B. K.
,
1997
, “
Polyvinyl Alcohol Cryogel: An Ideal Phantom Material for MR Studies of Arterial Flow and Elasticity
,”
Magn. Reson. Med.
,
37
(
2
), pp.
314
319
.10.1002/mrm.1910370230
20.
Fromageau
,
J.
,
Gennisson
,
J.
,
Schmitt
,
C.
,
Maurice
,
R. L.
,
Mongrain
,
R.
, and
Cloutier
,
G.
,
2007
, “
Estimation of Polyvinyl Alcohol Cryogel Mechanical Properties With Four Ultrasound Elastography Methods and Comparison With Gold Standard Testings
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
3
), pp.
498
509
.10.1109/TUFFC.2007.273
21.
Dagan
,
J.
,
1982
, “
Pulsatile Mechanical and Mathematical Model of the Cardiovascular System
,”
Med. Biol. Eng. Comput.
,
20
(
5
), pp.
601
607
.10.1007/BF02443408
22.
Garitey
,
V.
,
Gandelheid
,
T.
,
Fuseri
,
J.
,
PÉlissier
,
R.
, and
Rieu
,
R.
,
1995
, “
Ventricular Flow Dynamic Past Bileaflet Prosthetic Heart Valves
,”
Int. J. Artif. Organs
,
18
(
7
), pp.
380
391
.10.1177/039139889501800706
23.
Kadem
,
L.
,
Pibarot
,
P.
,
Dumesnil
,
J.
,
Mouret
,
F.
,
Garitey
,
V.
,
Durand
,
L.
, and
Rieu
,
R.
,
2002
, “
Independent Contribution of Left Ventricular Ejection Time to the Mean Gradient in Aortic Stenosis
,”
J. Heart Valve Dis.
,
11
(
5
), pp.
615
623
.https://www.ncbi.nlm.nih.gov/pubmed/12358396
24.
Carlhäll
,
C.
,
Wigström
,
L.
,
Heiberg
,
E.
,
Karlsson
,
M.
,
Bolger
,
A. F.
, and
Nylander
,
E.
,
2004
, “
Contribution of Mitral Annular Excursion and Shape Dynamics to Total Left Ventricular Volume Change
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
4
), pp.
H1836
H1841
.10.1152/ajpheart.00103.2004
25.
Gorman
,
J. H.
,
Gupta
,
K. B.
,
Streicher
,
J. T.
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Ratcliffe
,
M. B.
,
Bogen
,
D. K.
, and
Edmunds
,
L. H.
,
1996
, “
Dynamic Three-Dimensional Imaging of the Mitral Valve and Left Ventricle by Rapid Sonomicrometry Array Localization
,”
J. Thorac. Cardiovasc. Surg.
,
112
(
3
), pp.
712
724
.10.1016/S0022-5223(96)70056-9
26.
Kaplan
,
S. R.
,
Bashein
,
G.
,
Sheehan
,
F. H.
,
Legget
,
M. E.
,
Munt
,
B.
,
Li
,
X.-N.
,
Sivarajan
,
M.
,
Bolson
,
E. L.
,
Zeppa
,
M.
,
Archa
,
M.
, and
Martin
,
R. W.
,
2000
, “
Three-Dimensional Echocardiographic Assessment of Annular Shape Changes in the Normal and Regurgitant Mitral Valve
,”
Am. Heart J.
,
139
(
3
), pp.
378
387
.10.1016/S0002-8703(00)90077-2
27.
Flachskampf
,
F. A.
,
Chandra
,
S.
,
Gaddipatti
,
A.
,
Levine
,
R. A.
,
Weyman
,
A. E.
,
Ameling
,
W.
,
Hanrath
,
P.
, and
Thomas
,
J. D.
,
2000
, “
Analysis of Shape and Motion of the Mitral Annulus in Subjects With and Without Cardiomyopathy by Echocardiographic 3-Dimensional Reconstruction
,”
J. Am. Soc. Echocardiogr.
,
13
(
4
), pp.
277
287
.10.1067/mje.2000.103878
28.
Banai
,
S.
,
Jolicoeur
,
E. M.
,
Schwartz
,
M.
,
Garceau
,
P.
,
Biner
,
S.
,
Tanguay
,
J.-F.
,
Cartier
,
R.
,
Verheye
,
S.
,
White
,
C. J.
, and
Edelman
,
E.
,
2012
, “
Tiara: A Novel Catheter-Based Mitral Valve Bioprosthesis
,”
J. Am. Coll. Cardiol.
,
60
(
15
), pp.
1430
1431
.10.1016/j.jacc.2012.05.047
29.
Demitri
,
C.
,
Sannino
,
A.
,
Conversano
,
F.
,
Casciaro
,
S.
,
Distante
,
A.
, and
Maffezzoli
,
A.
,
2008
, “
Hydrogel Based Tissue Mimicking Phantom for in-Vitro Ultrasound Contrast Agents Studies
,”
J. Biomed. Mater. Res. B. Appl. Biomater.
,
87B
(
2
), pp.
338
345
.10.1002/jbm.b.31108
30.
Jayaramudu
,
T.
,
Ko
,
H.-U.
,
Zhai
,
L.
,
Li
,
Y.
, and
Kim
,
J.
,
2017
, “
Preparation and Characterization of Hydrogels From Polyvinyl Alcohol and Cellulose and Their Electroactive Behavior
,”
Soft Mater.
,
15
(
1
), pp.
64
72
.10.1080/1539445X.2016.1246458
You do not currently have access to this content.