Abstract

This work presents the design of an articulate neuroendoscopic instrument (ANI), a handheld tool for use in minimally invasive neurosurgery. The instrument consists of a handle and a steerable tube-shaft with a distal end-effector. The design aims to increase the reach of surgeons operating through narrow channels within the center of the brain when approaching multiple targets from a single incision point. The steerable tube-shaft consists of a 1.6- mm notch-tube compliant joint mechanism augmented with contact-aids modeled after a gear geometry. The contact-aid geometry aims to address the performance tradeoff between stiffness, range-of-motion (RoM), and joint compactness for millimeter-scale notched-tube joints; it increases blocking force without sacrificing RoM. Finite element modeling (FEM) was used to refine design features, and the joint stiffness and RoM are assessed experimentally for three prototypes. The joint is incorporated into a tube-shaft instrument, and the assembled tool's stiffness properties are characterized. The prototype was then assessed in a validated neurosurgical simulator. An individual 1.24-mm outer-diameter notch-tube compliant joint with gear contact-aids is capable of 30 deg maximum bending and can sustain a 0.55 N blocking force with 0.5 mm displacement. A functional instrument shaft with a 15.5- mm-long articulating section was constructed from three joints in series with an external flexible stainless-steel sheath. It achieves a 6.7-mm bending radius at 75 deg maximum bending angle. In preclinical testing with an endoscopic third ventriculostomy and endoscopic tumor biopsy (ETV-ETB) simulator, the tool successfully completes the biopsy and fenestration maneuvers from a single burr-hole entry point. The ANI prototype uses contact-aid geometry incorporated into a compliant nitinol notched-tube joint to produce an articulate biopsy instrument for minimally invasive neurosurgical applications.

References

1.
Grotenhuis
,
A.
,
2014
, “
Neuroendoscopic Instruments q Surgical Technique
,”
Neuroendoscopy
,
S.
Sgouros
, ed.,
Springer
,
Berlin, pp.
81
91
.
2.
Gaab
,
M. R.
,
2013
, “
Instrumentation: Endoscopes and Equipment
,”
World Neurosurg.
,
79
(
2
), pp.
e11
e21
.10.1016/j.wneu.2012.02.032
3.
Marcus
,
H. J.
,
Cundy
,
T. P.
,
Hughes-Hallett
,
A.
,
Yang
,
G. Z.
,
Darzi
,
A.
, and
Nandi
,
D.
,
2014
, “
Endoscopic and Keyhole Endoscope-Assisted Neurosurgical Approaches: A Qualitative Survey on Technical Challenges and Technological Solutions
,”
Br. J. Neurosurg.
,
28
(
5
), pp.
606
610
.10.3109/02688697.2014.887654
4.
Qiao
,
L.
, and
Souweidane
,
M. M.
,
2011
, “
Purely Endoscopic Removal of Intraventricular Brain Tumors: A Consensus Opinion and Update
,”
Minimally Invasive Neurosurg.
,
54
(
4
), pp.
149
154
.10.1055/s-0031-1284386
5.
Eastwood
,
K. W.
,
Azimian
,
H.
,
Carrillo
,
B.
,
Looi
,
T.
,
Naguib
,
H. E.
, and
Drake
,
J. M.
,
2016
, “
Kinetostatic Design of Asymmetric Notch Joints for Surgical Robots
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Daejeon, South Korea, Oct. 9–14, pp.
2381
2387
.10.1109/IROS.2016.7759371
6.
Swaney
,
P. J.
,
York
,
P. A.
,
Gilbert
,
H. B.
,
Burgner-Kahrs
,
J.
, and
Webster
,
R. J.
, III
,
2017
, “
Design, Fabrication, and Testing of a Needle-Sized Wrist for Surgical Instruments
,”
ASME J. Med. Devices
,
11
(
1
), pp.
0145011
0145019
.10.1115/1.4034575
7.
Eastwood
,
K. W.
,
Francis
,
P.
,
Azimian
,
H.
,
Swarup
,
A.
,
Looi
,
T.
,
Drake
,
J. M.
, and
Naguib
,
H. E.
,
2018
, “
Design of a Contact-Aided Compliant Notched-Tube Joint for Surgical Manipulation in Confined Workspaces
,”
ASME J. Mech. Rob.
,
10
(
1
), pp.
015001
015013
.10.1115/1.4038254
8.
Liu
,
J.
,
Hall
,
B.
,
Frecker
,
M.
, and
Reutzel
,
E. W.
,
2013
, “
Compliant Articulation Structure Using Superelastic NiTiNOL
,”
Smart Mater. Struct.
,
22
(
9
), p.
094018
.10.1088/0964-1726/22/9/094018
9.
Gao
,
A.
,
Liu
,
H.
,
Zou
,
Y.
,
Wang
,
Z.
,
Liang
,
M.
, and
Wang
,
Z.
,
2017
, “
A Contact-Aided Asymmetric Steerable Catheter for Atrial Fibrillation Ablation
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1525
1531
.10.1109/LRA.2017.2676351
10.
Ros-Freixedes
,
L.
,
Gao
,
A.
,
Liu
,
N.
, and
Yang
,
G. Z.
,
2018
, “
Kinematics and Workspace Analysis of a Contact-Aided Continuum Robot With Laser Profiling
,”
Hamlyn Symposium on Medical Robotics
, London, UK, pp.
15
16
.
11.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2007
, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2564
2605
.10.1002/nme.1861
12.
Kanada
,
Y.
,
Yoneyama
,
T.
,
Watanabe
,
T.
,
Kagawa
,
H.
,
Sugiyama
,
N.
,
Tanaka
,
K.
, and
Hanyu
,
T.
,
2013
, “
Force Feedback Manipulating System for Neurosurgery
,”
First CIRP Conf. BioManuf.
, Tokyo, Japan, 5, pp.
133
136
.10.1016/j.procir.2013.01.027
13.
Yoneyama
,
T.
,
Watanabe
,
T.
,
Kagawa
,
H.
,
Hamada
,
J.
,
Hayashi
,
Y.
, and
Nakada
,
M.
,
2011
, “
Force Detecting Gripper and Flexible Micro Manipulator for Neurosurgery
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Boston, MA, Aug. 30–Sept. 3, pp.
6695
6699
.10.1109/IEMBS.2011.6091651
14.
Bell
,
J. A.
,
Saikus
,
C. E.
,
Ratnayaka
,
K.
,
Wu
,
V.
,
Sonmez
,
M.
,
Faranesh
,
A. Z.
,
Colyer
,
J. H.
,
Lederman
,
R. J.
, and
Kocaturk
,
O.
,
2012
, “
A Deflectable Guiding Catheter for Real-Time MRI-Guided Interventions
,”
J. Magn. Reson. Imaging
,
35
(
4
), pp.
908
915
.10.1002/jmri.23520
15.
Fischer
,
H.
,
Vogel
,
B.
,
Pfleging
,
W.
, and
Besser
,
H.
,
1999
, “
Flexible Distal Tip Made of Nitinol (NiTi) for a Steerable Endoscopic Camera System
,”
Mater. Sci. Eng. A
,
273–275
, pp.
780
783
.10.1016/S0921-5093(99)00415-3
16.
Haga
,
Y.
,
Muyari
,
Y.
,
Goto
,
S.
,
Matsunaga
,
T.
, and
Esashi
,
M.
,
2011
, “
Development of Minimally Invasive Medical Tools Using Laser Processing on Cylindrical Substrates
,”
Electr. Eng. Jpn.
,
176
(
1
), pp.
65
74
.10.1002/eej.21030
17.
Gao
,
A.
,
Murphy
,
R.
,
Liu
,
H.
,
Iordachita
,
I.
, and
Armand
,
M.
,
2017
, “
Mechanical Model of Dexterous Continuum Manipulators With Compliant Joints and Tendon/External Force Interactions
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
465
475
.10.1109/TMECH.2016.2612833
18.
Kutzer
,
M. D. M.
,
Segreti
,
S. M.
,
Brown
,
C. Y.
,
Taylor
,
R. H.
,
Mears
,
S. C.
, and
Armand
,
M.
,
2011
, “
Design of a New Cable-Driven Manipulator With a Large Open Lumen: Preliminary Applications in the Minimally-Invasive Removal of Osteolysis
,”
IEEE International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
2913
2920
.10.1109/ICRA.2011.5980285
19.
Bekeny
,
J. R.
,
Swaney
,
P. J.
,
Webster
,
R. J.
,
Russell
,
P. T.
, and
Weaver
,
K. D.
,
2013
, “
Forces Applied at the Skull Base During Transnasal Endoscopic Transsphenoidal Pituitary Tumor Excision
,”
J. Neurol. Surg. Part B
,
74
(
06
), pp.
337
41
.10.1055/s-0033-1345108
20.
Eastwood
,
K. W.
,
Bodani
,
V. P.
, and
Drake
,
J. M.
,
2016
, “
Three-Dimensional Simulation of Collision-Free Paths for Combined Endoscopic Third Ventriculostomy and Pineal Region Tumor Biopsy: Implications for the Design Specifications of Future Flexible Endoscopic Instruments
,”
Op. Neurosurg.
,
12
(
3
), pp.
231
238
.10.1227/NEU.0000000000001177
21.
Jelínek
,
F.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2014
, “
DragonFlex Smart Steerable Laparoscopic Instrument
,”
ASME J. Med. Devices
,
8
(
1
), pp.
015001
015010
.10.1115/1.4026153
22.
Sandoval
,
R.
,
MacLachlan
,
R. A.
,
Oh
,
M. Y.
, and
Riviere
,
C. N.
,
2007
, “
Positioning Accuracy of Neurosurgeons
,”
International Conference of the IEEE Engineering in Medicine and Biology Society
,
Lyon, France
, Aug. 22–26, pp.
206
209
.10.1109/IEMBS.2007.4352259
23.
Salaheih
,
A.
,
Lepak
,
J.
,
Leung
,
E.
,
Saul
,
T.
, and
Dueri
,
J. P.
,
2010
, “
Steerable Medical Delivery Devices and Methods of Use
,” U.S. Patent No. 8323241B2.
24.
Morgenstern
,
P. F.
,
Osbun
,
N.
,
Schwartz
,
T. H.
,
Greenfield
,
J. P.
,
Tsiouris
,
A. J.
, and
Souweidane
,
M. M.
,
2011
, “
Pineal Region Tumors: An Optimal Approach for Simultaneous Endoscopic Third Ventriculostomy and Biopsy
,”
Neurosurg. Focus
,
30
(
4
), pp.
E3
E5
.10.3171/2011.2.FOCUS10301
25.
Morgenstern
,
P. F.
, and
Souweidane
,
M. M.
,
2013
, “
Pineal Region Tumors: Simultaneous Endoscopic Third Ventriculostomy and Tumor Biopsy
,”
World Neurosurg.
,
79
(
2
), pp.
e9
e13
.10.1016/j.wneu.2012.02.020
26.
Knaus
,
H.
,
Matthias
,
S.
,
Koch
,
A.
, and
Thomale
,
U. W.
,
2011
, “
Single Burr Hole Endoscopic Biopsy With Third Ventriculostomy-Measurements and Computer-Assisted Planning
,”
Child's Nervous Syst.
,
27
(
8
), pp.
1233
1241
.10.1007/s00381-011-1405-1
27.
Zhu
,
X. L.
,
Gao
,
R.
,
Wong
,
G. K. C.
,
Wong
,
H. T.
,
Ng
,
R. Y. T.
,
Yu
,
Y.
,
Wong
,
R. K. M.
, and
Poon
,
W. S.
,
2013
, “
Single Burr Hole Rigid Endoscopic Third Ventriculostomy and Endoscopic Tumor Biopsy: What is the Safe Displacement Range for the Foramen of Monro?
,”
Asian J. Surg.
,
36
(
2
), pp.
74
82
.10.1016/j.asjsur.2012.11.008
28.
Breimer
,
G. E.
,
Bodani
,
V.
,
Looi
,
T.
, and
Drake
,
J. M.
,
2015
, “
Design and Evaluation of a New Synthetic Brain Simulator for Endoscopic Third Ventriculostomy
,”
J. Neurosurg. Pediatr.
,
15
(
1
), pp.
82
88
.10.3171/2014.9.PEDS1447
You do not currently have access to this content.