Abstract

Vessel sealing using bipolar electrosurgery is becoming a common practice in modern operating rooms. Despite all the advantages such as faster operation, less bleeding, and shorter postsurgery recovery time, side effects including sticking, charring, and rebleeding still occur, leading to increased surgery time and sometimes fatal complications. Tissue impedance during the electrosurgical process has been used to determine the electrical power of the process. However, little has been done to understand the dynamic tissue impedance and its effectiveness in monitoring the vessel sealing process. Moreover, the samples used in previous studies all had small diameters of 2–5 mm. In this study, an experimental setup was developed to perform vessel sealing tests using large-diameter blood vessel samples with mimicking blood flow. The tissue impedance during the heating process was obtained. Burst pressures after sealing were measured. A finite element simulation model was developed to understand the dynamic impedance behavior. It is seen that the tissue impedance increases rapidly in the beginning of the heating process and remains at a level that is several orders of magnitude higher than the initial value. This rapid impedance increase indicates protein denaturing, thus can be used to monitor the electrosurgical vessel sealing process. An impedance-based monitoring algorithm was developed, with which a burst pressure at least twice the normal human systolic blood pressure was achieved.

References

References
1.
Bulsara
,
K. R.
,
Sukhla
,
S.
, and
Nimjee
,
S. M.
,
2006
, “
History of Bipolar Coagulation
,”
Neurosurg. Rev.
,
29
(
2
), pp.
93
96
.10.1007/s10143-005-0012-6
2.
Kusunoki
,
M.
,
Shoji
,
Y.
,
Yanagi
,
H.
, and
Yamamura
,
T.
,
1998
, “
Usefulness of Bipolar Scissors for Total Colectomy
,”
Dis. Colon Rectum
,
41
(
9
), pp.
1197
1200
.10.1007/BF02239445
3.
Law
,
K. S.
, and
Lyons
,
S. D.
,
2013
, “
Comparative Studies of Energy Sources in Gynecologic Laparoscopy
,”
J. Minimally Invasive Gynecol.
,
20
(
3
), pp.
308
318
.10.1016/j.jmig.2013.01.014
4.
Munro
,
M. G.
,
2012
, “
Fundamentals of Electrosurgery Part I: Principles of Radiofrequency Energy for Surgery
,”
The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE)
,
L.
Feldman
,
P.
Fuchshuber
, and
D. B.
Jones
, eds.,
Springer
,
New York
, pp.
15
59
.
5.
Vilos
,
G. A.
, and
Rajakumar
,
C.
,
2013
, “
Electrosurgical Generators and Monopolar and Bipolar Electrosurgery
,”
J. Minimally Invasive Gynecol.
,
20
(
3
), pp.
279
287
.10.1016/j.jmig.2013.02.013
6.
Wang
,
K.
, and
Advincula
,
A. P.
,
2007
, “
Current Thoughts in Electrosurgery
,”
Int. J. Gynaecol. Obstet.
,
97
(
3
), pp.
245
–2
50
.10.1016/j.ijgo.2007.03.001
7.
Wu
,
M.-P.
,
Ou
,
C.-S.
,
Chen
,
S.-L.
,
Yen
,
E. Y.
, and
Rowbotham
,
R.
,
2000
, “
Complications and Recommended Practices for Electrosurgery in Laparoscopy
,”
Am. J. Surg.
,
179
(
1
), pp.
67
73
.10.1016/S0002-9610(99)00267-6
8.
Huang
,
H.-Y.
,
Yen
,
C.-F.
, and
Wu
,
M.-P.
,
2014
, “
Complications of Electrosurgery in Laparoscopy
,”
Gynecol. Minimally Invasive Ther.
,
3
(
2
), pp.
39
42
.10.1016/j.gmit.2014.05.004
9.
Demirtaş
,
Y.
,
Ayhan
,
S.
,
Yavuzer
,
R.
,
Latifoğlu
,
O.
, and
Çelebi
,
C.
,
2006
, “
Electrosurgery: Pitfalls and Recommendations
,”
Gazi Med. J.
,
17
(
3
), pp.
145
151.
https://www.researchgate.net/publication/288045654_Electrosurgery_Pitfalls_and_recommendations
10.
Tucker
,
R. D.
, and
Voyles
,
C. R.
,
1995
, “
Laparoscopic Electrosurgical Complications and Their Prevention
,”
AORN J.
,
62
(
1
), pp.
49
71
.10.1016/S0001-2092(06)63683-1
11.
Bergdahl
,
B.
, and
Vällfors
,
B.
,
1991
, “
Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator
,”
J. Neurosurgery
,
75
(
1
), pp.
148
151
.10.3171/jns.1991.75.1.0148
12.
Campbell
,
P.
,
Cresswell
,
A.
,
Frank
,
T.
, and
Cuschieri
,
A.
,
2003
, “
Real-Time Thermography During Energized Vessel Sealing and Dissection
,”
Surg. Endoscopy Other Interventional Tech.
,
17
(
10
), pp.
1640
1645
.10.1007/s00464-002-8781-2
13.
Karatzias
,
G. T.
,
Lachanas
,
V. A.
, and
Sandris
,
V. G.
,
2006
, “
Thermal Welding Versus Bipolar Tonsillectomy: A Comparative Study
,”
Otolaryngol. Head Neck Surg.
,
134
(
6
), pp.
975
978
.10.1016/j.otohns.2006.03.003
14.
Nardella
,
P. C.
,
1998
, “
Impedance Feedback Electrosurgical System
,” Patent No. 5713896.
15.
Williamson
,
W. P.
IV
, and
Yates
,
D. C.
,
1998
, “
Impedance Feedback Monitor With Query Electrode for Electrosurgical Instrument
,” Patents No.
US5817093A
. https://patents.google.com/patent/US5817093A/en
16.
Odom
,
D.
,
Weinberg
,
C.
, and
Denham
,
A.
,
2011
, “
System and Method for Measuring Initial Tissue Impedance
,” Patents No.
US9655670B2
.https://patentimages.storage.googleapis.com/f8/29/db/e1327b05ab4819/US9655670.pdf
17.
Cezo
,
J.
,
Kramer
,
E.
,
Taylor
,
K.
,
Ferguson
,
V.
, and
Rentschler
,
M.
, Year,
2013
, “
Tissue Fusion Bursting Pressure and the Role of Tissue Water Content
,”
Proc. SPIE,
8584, p. 85840M.
10.1117/12.2002184
18.
Reyes
,
D. A.
,
Brown
,
S. I.
,
Cochrane
,
L.
,
Motta
,
L. S.
, and
Cuschieri
,
A.
,
2012
, “
Thermal Fusion: Effects and Interactions of Temperature, Compression, and Duration Variables
,”
Surg. Endoscopy
,
26
(
12
), pp.
3626
3633
.10.1007/s00464-012-2386-1
19.
Anderson
,
N.
,
Kramer
,
E.
,
Cezo
,
J.
,
Ferguson
,
V.
, and
Rentschler
,
M. E.
,
2014
, “
Tissue Bond Strength as a Function of Applied Fusion Pressure
,”
ASME J. Med. Devices
,
8
(
3
), p.
030925
.10.1115/1.4027046
20.
Chen
,
R. K.
,
Chastagner
,
M. W.
,
Geiger
,
J. D.
, and
Shih
,
A. J.
,
2014
, “
Bipolar Electrosurgical Vessel-Sealing Device With Compressive Force Monitoring
,”
ASME J. Biomech. Eng.
,
136
(
6
), p.
061001
.10.1115/1.4027269
21.
Cezo
,
J. D.
,
Passernig
,
A. C.
,
Ferguson
,
V. L.
,
Taylor
,
K. D.
, and
Rentschler
,
M. E.
,
2014
, “
Evaluating Temperature and Duration in Arterial Tissue Fusion to Maximize Bond Strength
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
41
49
.10.1016/j.jmbbm.2013.10.007
22.
Lamberton
,
G. R.
,
Hsi
,
R. S.
,
Jin
,
D. H.
,
Lindler
,
T. U.
,
Jellison
,
F. C.
, and
Baldwin
,
D. D.
,
2008
, “
Prospective Comparison of Four Laparoscopic Vessel Ligation Devices
,”
J. Endourol.
,
22
(
10
), pp.
2307
2312
.10.1089/end.2008.9715
23.
Wallwiener
,
C. W.
,
Rajab
,
T. K.
,
Zubke
,
W.
,
Isaacson
,
K. B.
,
Enderle
,
M.
,
Schäller
,
D.
, and
Wallwiener
,
M.
,
2008
, “
Thermal Conduction, Compression, and Electrical Current—An Evaluation of Major Parameters of Electrosurgical Vessel Sealing in a Porcine In Vitro Model
,”
J. Minimally Invasive Gynecol.
,
15
(
5
), pp.
605
610
.10.1016/j.jmig.2008.05.003
24.
Person
,
B.
,
Vivas
,
D. A.
,
Ruiz
,
D.
,
Talcott
,
M.
,
Coad
,
J. E.
, and
Wexner
,
S. D.
,
2008
, “
Comparison of Four Energy-Based Vascular Sealing and Cutting Instruments: A Porcine Model
,”
Surg. Endoscopy
,
22
(
2
), pp.
534
538
.10.1007/s00464-007-9619-8
25.
Li
,
X.
,
Chen
,
R.
, and
Li
,
W.
,
2018
, “
An Experimental Study on Bipolar Tissue Hemostasis and Its Dynamic Impedance
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061016
.10.1115/1.4039493
26.
Chen
,
R. K.
,
Chastagner
,
M. W.
,
Dodde
,
R. E.
, and
Shih
,
A. J.
,
2013
, “
Electrosurgical Vessel Sealing Tissue Temperature: Experimental Measurement and Finite Element Modeling
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
453
460
.10.1109/TBME.2012.2228265
27.
Yang
,
D.
,
Converse
,
M. C.
,
Mahvi
,
D. M.
, and
Webster
,
J. G.
,
2007
, “
Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating
,”
IEEE Trans. Biomed. Eng.
,
54
(
8
), pp.
1382
1388
.10.1109/TBME.2007.890740
28.
Haemmerich
,
D.
,
Chachati
,
L.
,
Wright
,
A. S.
,
Mahvi
,
D. M.
,
Lee
,
F. T.
, and
Webster
,
J. G.
,
2003
, “
Hepatic Radiofrequency Ablation With Internally Cooled Probes: Effect of Coolant Temperature on Lesion Size
,”
IEEE Trans. Biomed. Eng.
,
50
(
4
), pp.
493
500
.10.1109/TBME.2003.809488
You do not currently have access to this content.