Abstract

Three-dimensional (3D) printing may be a solution to shortages of equipment and spare parts in the healthcare sector of low- and middle-income countries (LMICs). Polylactic acid (PLA) for 3D printing is widely available and biocompatible, but there is a gap in knowledge concerning its compatibility with chemical disinfectants. In this study, 3D-printed PLA tensile samples were created with six different printer settings. Each of these six batches consisted of five sets with five or six samples. The first set remained untreated, the others were soaked in Cidex OPA or in a chlorine solution. These were applied for seven consecutive days or in 25 short cycles. All samples were weighed before and after treatment and subjected to a tensile test. Results showed that a third of the treatments led to an increase of the median weight with a maximum of 8.3%, however, the samples with the best surface quality did not change. The median strength increase was 12.5% and the largest decrease was 8.8%. The median stiffness decreased 3.6% in one set and increased in three others up to 13.6%. When 3D printing PLA medical tools, surface porosity must be minimized to prevent transfer of disinfectants to people. The wide variability of mechanical properties due to 3D printing itself and as a consequence of disinfection must be considered when designing medical tools by selecting appropriate printer settings. If these conditions are met, reusing 3D-printed PLA medical tools seems safe from a mechanical point of view.

References

References
1.
IHME
,
2014
, “
Health Service Provision in Kenya: Assessing Facility Capacity, Costs of Care, and Patient Perspectives
,” Institute for Health Metrics and Evaluation, Seattle, WA.
2.
Oosting
,
R.
,
Wauben
,
L.
,
Groen
,
R.
, and
Dankelman
,
J.
,
2019
, “
Equipment for Essential Surgical Care in 9 Countries Across Africa: Availability, Barriers and Need for Novel Design
,”
Health Technol.
,
9
(
3
), pp.
269
275
.10.1007/s12553-018-0275-x
3.
Perry
,
L.
, and
Malkin
,
R.
,
2011
, “
Effectiveness of Medical Equipment Donations to Improve Health Systems: How Much Medical Equipment is Broken in the Developing World?
,”
Med Biol Eng Comput.
, 49(7), pp.
719
722
.10.1007/s11517-011-0786-3
4.
Malkin
,
R.
, and
Keane
,
A.
,
2010
, “
Evidence-Based Approach to the Maintenance of Laboratory and Medical Equipment in Resource-Poor Settings
,”
Med & Biol Eng Comput.
, 48(7), pp.
721
726
.10.1007/s11517-010-0630-1
5.
James
,
E.
, and
Gilman
,
D.
,
2016
, “
Shrinking the Supply Chain: Hyperlocal Manufacturing and 3D Printing in Humanitarian Response
,” UN, Den Haag, The Netherlands.
6.
Bhatia
,
S. K.
, and
Ramadurai
,
K. W.
,
2017
,
3D Printing and Bio-Based Materials in Global Health
,
Springer
, Cham, Switzerland.
7.
Rankin
,
T. M.
,
Giovinco
,
N. A.
,
Cucher
,
D. J.
,
Watts
,
G.
,
Hurwitz
,
B.
, and
Armstrong
,
D. G.
,
2014
, “
Three-Dimensional Printing Surgical Instruments: Are We There Yet?
,”
J. Surg. Res.
,
189
(
2
), pp.
193
197
.10.1016/j.jss.2014.02.020
8.
Pavlosky
,
A.
,
Glauche
,
J.
,
Chambers
,
S.
,
Al-Alawi
,
M.
,
Yanev
,
K.
, and
Loubani
,
T.
,
2018
, “
Validation of an Effective, Low Cost, Free/Open Access 3D-Printed Stethoscope
,”
PLoS One
,
13
(
3
), p.
e0193087
.10.1371/journal.pone.0193087
9.
Kats
,
D.
,
Spicher
,
L.
,
Savonen
,
B.
, and
Gershenson
,
J.
,
2018
, “
Paper 3D Printing to Supplement Rural Healthcare Supplies-What Do Healthcare Facilities Want?
,”
IEEE Global Humanitarian Technology Conference
(
GHTC
), San Jose, CA, Oct. 18–21, pp.
1
8
.10.1109/ghtc.2018.8601529
10.
Ibrahim
,
A. M.
,
Jose
,
R. R.
,
Rabie
,
A. N.
,
Gerstle
,
T. L.
,
Lee
,
B. T.
, and
Lin
,
S. J.
,
2015
, “
Three-Dimensional Printing in Developing Countries
,”
Plast. Reconstr. Surg. Global Open
,
3
(
7
), p. e443.
11.
Savonen
,
B.
,
Mahan
,
T.
,
Curtis
,
M.
,
Schreier
,
J.
,
Gershenson
,
J.
, and
Pearce
,
J.
,
2018
, “
Development of a Resilient 3-D Printer for Humanitarian Crisis Response
,”
Technologies
,
6
(
1
), p.
30
.10.3390/technologies6010030
12.
Kondor
,
S.
,
Grant
,
C. G.
,
Liacouras
,
P.
,
Schmid
,
M. J. R.
,
Parsons
,
L. M.
,
Rastogi
,
V. K.
,
Smith
,
L. S.
,
Macy
,
B.
,
Sabart
,
B.
, and
Macedonia
,
C.
,
2013
, “
On Demand Additive Manufacturing of a Basic Surgical Kit
,”
ASME J. Med. Devices
,
7
(
3
), p.
030916
.10.1115/1.4024490
13.
John
,
A.
,
John
,
S.
, and
Lambert
,
C.
,
2017
, “
Development and Testing of a Low Cost Videolaryngoscope in a Resource Limited Setting
,”
Ann. Global Health
,
1
(
83
), pp.
4
5
.10.1016/j.aogh.2017.03.009
14.
Meara
,
J. G.
,
Leather
,
A. J.
,
Hagander
,
L.
,
Alkire
,
B. C.
,
Alonso
,
N.
,
Ameh
,
E. A.
,
Bickler
,
S. W.
,
Conteh
,
L.
,
Dare
,
A. J.
,
Davies
,
J.
,
Derivois Merisier
,
E.
,
El-Halabi
,
S.
,
Farmer
,
P.
,
Gawande
,
A.
,
Gillies
,
R.
,
Greenberg
,
S. L. M.
,
Grimes
,
C. E.
,
Gruen
,
R. L.
,
Adan Ismail
,
E.
,
Buya Kamara
,
T.
,
Lavy
,
C.
,
Lundeg
,
G.
,
Mkandawire
,
N. C.
,
Raykar
,
N. P.
,
Riesel
,
J. N.
,
Rodas
,
E.
,
Rose
,
J.
,
Roy
,
N.
,
Shrime
,
M. G.
,
Sullivan
,
R.
,
Verguet
,
S.
,
Watters
,
D.
,
Weiser
,
T. G.
,
Wilson
,
I. H.
,
Yamey
,
G.
, and
Yip
,
W.
,
2015
, “
Global Surgery 2030: Evidence and Solutions for Achieving Health, Welfare, and Economic Development
,”
Lancet
,
386
(
9993
), pp.
569
624
.10.1016/S0140-6736(15)60160-X
15.
Chao
,
T. E.
,
Mandigo
,
M.
,
Opoku-Anane
,
J.
, and
Maine
,
R.
,
2016
, “
Systematic Review of Laparoscopic Surgery in Low-and Middle-Income Countries: Benefits, Challenges, and Strategies
,”
Surg. Endoscopy
,
30
(
1
), pp.
1
10
.10.1007/s00464-015-4201-2
16.
Oosting
,
R.
,
Dankelman
,
J.
,
Wauben
,
L.
,
Madete
,
J.
, and
Groen
,
R.
,
2018
, “
Roadmap for Design of Surgical Equipment for Safe Surgery Worldwide
,”
IEEE Global Humanitarian Technology Conference
(
GHTC
), San Jose, CA, Oct. 18–21, pp.
1
8
.10.1109/GHTC.2018.8601913
17.
Sastri
,
V. R.
,
2013
,
Plastics in Medical Devices: Properties, Requirements, and Applications
,
William Andrew
, Oxford, UK.
18.
McKeen
,
L. W.
,
2014
, “
Plastics Used in Medical Devices
,”
Handbook of Polymer Applications in Medicine and Medical Devices
,
Elsevier
, Oxford, UK, pp.
21
53
.
19.
Oosting
,
R. M.
,
Wauben
,
L. S.
,
Mwaura
,
S. W.
,
Madete
,
J. K.
,
Groen
,
R. S.
, and
Dankelman
,
J.
,
2019
, “
Barriers to Availability of Surgical Equipment in Kenya
,”
Global Clin. Eng. J.
,
1
(
2
), pp.
35
42
.10.31354/globalce.v1i2.61
20.
Johnson & Johnson,
2006, “
Cidex OPA—Ortho-Phthalaldehyde Solution Instruction
,” Johnson & Johnson, New Brunswick, NJ.
21.
Yew
,
G.
,
Yusof
,
A. M.
,
Ishak
,
Z. M.
, and
Ishiaku
,
U.
,
2005
, “
Water Absorption and Enzymatic Degradation of Poly (Lactic Acid)/Rice Starch Composites
,”
Polym. Degrad. Stab.
,
90
(
3
), pp.
488
500
.10.1016/j.polymdegradstab.2005.04.006
22.
Song
,
Y.
,
Li
,
Y.
,
Song
,
W.
,
Yee
,
K.
,
Lee
,
K.-Y.
, and
Tagarielli
,
V.
,
2017
, “
Measurements of the Mechanical Response of Unidirectional 3D-Printed PLA
,”
Mater. Des.
,
123
, pp.
154
164
.10.1016/j.matdes.2017.03.051
23.
Subramaniam
,
S.
,
Samykano
,
M.
,
Selvamani
,
S.
,
Ngui
,
W.
,
Kadirgama
,
K.
,
Sudhakar
,
K.
, and
Idris
,
M.
,
2019
, “
Preliminary Investigations of Polylactic Acid (PLA) Properties
,”
AIP Conf. Proc.
,
2059
, p.
020038
.10.1063/1.5085981
24.
Alafaghani
,
A.
,
Qattawi
,
A.
,
Alrawi
,
B.
, and
Guzman
,
A.
,
2017
, “
Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach
,”
Procedia Manuf.
,
10
, pp.
791
803
.10.1016/j.promfg.2017.07.079
25.
Yang
,
L.
,
Li
,
S.
,
Li
,
Y.
,
Yang
,
M.
, and
Yuan
,
Q.
,
2019
, “
Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts
,”
J. Mater. Eng. Perform.
,
28
(
1
), pp.
169
182
.10.1007/s11665-018-3784-x
26.
Pei
,
E.
,
Lanzotti
,
A.
,
Grasso
,
M.
,
Staiano
,
G.
, and
Martorelli
,
M.
,
2015
, “
The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA With an Open-Source 3-D Printer
,”
Rapid Prototyping J.
21(5), pp.
604
617
.10.1108/RPJ-09-2014-0135
27.
Mohamed
,
O. A.
,
Masood
,
S. H.
,
Bhowmik
,
J. L.
,
Nikzad
,
M.
, and
Azadmanjiri
,
J.
,
2016
, “
Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment
,”
J. Mater. Eng. Perform.
,
25
(
7
), pp.
2922
2935
.10.1007/s11665-016-2157-6
28.
ASTM
,
2015
, “
Standard Test Method for Tensile Properties of Plastics
,” ASTM International, West Conshohocken, PA, Standard No. ASTM D638-14.
29.
World Health Organization and Pan American Health
,
2016
, “
Decontamination and Reprocessing of Medical Devices for Health-Care Facilities
,” World Health Organization and Pan American Health Organization, Geneva, Switzerland.
30.
Akhoundi
,
B.
, and
Behravesh
,
A.
,
2019
, “
Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products
,”
Exp. Mech.
, pp.
1
15
.10.1007/s11340-018-00467-y
31.
Neighbour
,
R.
, and
Eltringham
,
R.
,
2012
, “
The Design of Medical Equipment for Low Income Countries: Dual Standards or Common Sense
,” 7th International Conference on Appropriate Healthcare Technologies for Developing Countries, IEEE, London, Sept. 18–19.
You do not currently have access to this content.