Abstract

A low-cost continuous passive motion (CPM) machine, the Gannon Exoskeleton for Arm Rehabilitation (GEAR), was designed. The focus of the machine is on the rehabilitation of primary functional movements of the arm. The device developed integrates two mechanisms consisting of a four-bar linkage and a sliding rod prismatic joint mechanism that can be mounted to a normal chair. When seated, the patient is connected to the device via a padded cuff strapped on the elbow. A set of springs have been used to maintain the system stability and help the lifting of the arm. A preliminary analysis via analytical methods is used to determine the initial value of the springs to be used in the mechanism given the desired gravity compensatory force. Subsequently, a multibody simulation was performed with the software simwise 4D by Design Simulation Technologies (DST). The simulation was used to optimize the stiffness of the springs in the mechanism to provide assistance to raising of the patient's arm. Furthermore, the software can provide a finite element analysis of the stress induced by the springs on the mechanism and the external load of the arm. Finally, a physical prototype of the mechanism was fabricated using polyvinyl chloride (PVC) pipes and commercial metal springs, and the reaching space was measured using motion capture. We believed that the GEAR has the potential to provide effective passive movement to individuals with no access to postoperative or poststroke rehabilitation therapy.

References

1.
Lynch
,
D.
,
Ferraro
,
M.
,
Krol
,
J.
,
Trudell
,
C. M.
,
Christos
,
P.
, and
Volpe
,
B. T.
,
2005
, “
Continuous Passive Motion Improves Shoulder Joint Integrity Following Stroke
,”
Clin. Rehabil.
,
19
(
6
), pp.
594
599
.10.1191/0269215505cr901oa
2.
Beer
,
R. F.
,
Naujokas
,
C.
,
Bachrach
,
B.
, and
Mayhew
,
D.
,
2008
, “
Development and Evaluation of a Gravity Compensated Training Environment for Robotic Rehabilitation of Post-Stroke Reaching
,”
Second IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
,
IEEE
,
Scottsdale, AZ
, Oct. 19–22, pp.
205
210
.10.1109/BIOROB.2008.4762863
3.
Colombo
,
R.
,
Pisano
,
F.
,
Micera
,
S.
,
Mazzone
,
A.
,
Delconte
,
C.
,
Carrozza
,
M. C.
,
Dario
,
P.
, and
Minuco
,
G.
,
2005
, “
Robotic Techniques for Upper Limb Evaluation and Rehabilitation of Stroke Patients
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
3
), pp.
311
324
.10.1109/TNSRE.2005.848352
4.
Morrey
,
B. F.
,
2018
, “
Continuous Passive Motion
,” In
Morrey's the Elbow and Its Disorders
, 5th ed.,
B. F.
Morrey
,
M. E.
Morrey
, and
J.
Sanchez-Sotelo
, eds.,
Elsevier
, Philadelphia, PA, pp.
171
172
.
5.
Du Plessis
,
M.
,
Eksteen
,
E.
,
Jenneker
,
A.
,
Kriel
,
E.
,
Mentoor
,
C.
,
Stucky
,
T.
,
van Staden
,
D.
, and
Morris
,
L. D.
,
2011
, “
The Effectiveness of Continuous Passive Motion on Range of Motion, Pain and Muscle Strength Following Rotator Cuff Repair: A Systematic Review
,”
Clin. Rehabil.
,
25
(
4
), pp.
291
302
.10.1177/0269215510380835
6.
Chang
,
Y.-J.
,
Fang
,
C.-Y.
,
Hsu
,
M.-J.
,
Lien
,
H.-Y.
, and
Wong
,
M.-K.
,
2007
, “
Decrease of Hypertonia After Continuous Passive Motion Treatment in Individuals With Spinal Cord Injury
,”
Clin. Rehabil.
,
21
(
8
), pp.
712
718
.10.1177/0269215507079137
7.
Lenssen
,
A. F.
,
De Bie
,
R. A.
,
Bulstra
,
S. K.
, and
Van Steyn
,
M. J. A.
,
2003
, “
Continuous Passive Motion (CPM) in Rehabilitation Following Total Knee Arthroplasty: A Randomised Controlled Trial
,”
Phys. Ther. Rev.
,
8
(
3
), pp.
123
129
.10.1179/108331903225003019
8.
Arata
,
J.
,
Ohmoto
,
K.
,
Gassert
,
R.
,
Lambercy
,
O.
,
Fujimoto
,
H.
, and
Wada
,
I.
,
2013
, “
A New Hand Exoskeleton Device for Rehabilitation Using a Three-Layered Sliding Spring Mechanism
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
Karlsruhe, Germany
, May 6–10, pp.
3902
3907
.10.1109/ICRA.2013.6631126
9.
Yili
,
F.
,
Fuxiang
,
Z.
,
Xin
,
M.
, and
Qinggang
,
M.
,
2005
, “
Development of a CPM Machine for Injured Fingers
,”
IEEE Engineering in Medicine and Biology 27th Annual Conference
,
IEEE
,
Shanghai, China
, Jan. 17–18, pp.
5017
5020
.10.1109/IEMBS.2005.1615602
10.
Li-Chun
,
H.
,
Wei-Wen
,
W.
,
Guan-De
,
L.
,
Yi-Wen
,
L.
,
Li-Chen
,
F.
, and
Jin-Shin
,
L.
,
2012
, “
A Gravity Compensation-Based Upper Limb Rehabilitation Robot
,”
American Control Conference
(
ACC
),
IEEE
,
Montreal, Canada
, June 27–29, pp.
4819
4824
.10.1109/ACC.2012.6315673
11.
Galiana
,
I.
,
Hammond
,
F. L.
,
Howe
,
R. D.
, and
Popovic
,
M. B.
,
2012
, “
Wearable Soft Robotic Device for Post-Stroke Shoulder Rehabilitation: Identifying Misalignments
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
Algarve, Portugal
, Oct. 7–12, pp.
317
322
.10.1109/IROS.2012.6385786
12.
Babaiasl
,
M.
,
Ghanbari
,
A.
, and
Noorani
,
S. M. R.
,
2013
, “
Mechanical Design, Simulation and Nonlinear Control of a New Exoskeleton Robot for Use in Upper-Limb Rehabilitation After Stroke
,”
20th Iranian Conference on Biomedical Engineering (ICBME)
,
IEEE
,
Tehran, Iran
, Dec. 18–20, pp.
5
10
.10.1109/ICBME.2013.6782183
13.
Wilkening
,
A.
,
Baiden
,
D.
, and
Ivlev
,
O.
,
2011
, “
Assistive Control of Motion Therapy Devices Based on Pneumatic Soft-Actuators With Rotary Elastic Chambers
,”
IEEE International Conference on Rehabilitation Robotics
,
IEEE
,
Zurich, Switzerland
, June 29–July 1, pp.
1
6
.10.1109/ICORR.2011.5975361
14.
Prange
,
G. B.
,
Krabben
,
T.
,
Renzenbrink
,
G. J.
,
de Boer
,
J.
,
Hermens
,
H. J.
, and
Jannink
,
M. J. A.
,
2009
, “
An Explorative Study Into Changes in Reach Performance After Gravity Compensation Training in Chronic Stroke Patients
,”
IEEE International Conference on Rehabilitation Robotics
,
IEEE
,
Kyoto, Japan
, June 23–26, pp.
867
872
.10.1109/ICORR.2009.5209537
15.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems, Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
Ph.D. dissertation
, Delft University of Technology, Delft, The Netherlands.10.13140/RG.2.1.3942.8966
16.
Piovesan
,
D.
,
Arumugam
,
Y.
,
Jackson
,
C.
,
Shanmugam
,
S. K.
,
Restifo
,
A.
, and
Legters
,
K.
, “
Gannon Exoskeleton for Arm Rehabilitation (GEAR)
,”
ASME
Paper No. IMECE2015-50926.
10.1115/IMECE2015-50926
17.
Dempster
,
W. T.
,
1955
, “
Space Requirements of the Seated Operator, Geometrical, Kinematic, and Mechanical Aspects of the Body With Special Reference to the Limbs
,” Defense Technical Information Center, Wright-Patterson AFB, OH.
18.
Morgan
,
C. D.
,
Burkhart
,
S. S.
,
Palmeri
,
M.
, and
Gillespie
,
M.
,
1998
, “
Type II SLAP Lesions: Three Subtypes and Their Relationships to Superior Instability and Rotator Cuff Tears
,”
Arthroscopy: J. Arthroscopic Relat. Surg.
,
14
(
6
), pp.
553
565
.10.1016/S0749-8063(98)70049-0
19.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2011
, “
Comparative Analysis of Methods for Estimating Arm Segment Parameters and Joint Torques From Inverse Dynamics
,” ASME
J. Biomech. Eng.
,
133
(
3
), p. 031003.10.1115/1.4003308
20.
Bukowski
,
E. L.
,
2000
,
Muscular Analysis of Everyday Activities
,
Slack, Thorofare, NJ
.
21.
Papich
,
J.
,
Kennett
,
C.
, and
Piovesan
,
D.
, “
Open-Source Software in Biomedical Education: From Tracking to Modeling Movements
,”
Proceedings American Society for Education in Engineering Annual Conference ASEE
, Indianapolis, IN, June 15–18, pp. 24.956.1-24.956.10.
22.
Singaraju
,
V. M.
,
Kang
,
R. W.
,
Yanke
,
A. B.
,
McNickle
,
A. G.
,
Lewis
,
P. B.
,
Wang
,
V. M.
,
Williams
,
J. M.
,
Chubinskaya
,
S.
,
Romeo
,
A. A.
, and
Cole
,
B. J.
,
2008
, “
Biceps Tendinitis in Chronic Rotator Cuff Tears: A Histologic Perspective
,”
J. Shoulder Elbow Surg.
,
17
(
6
), pp.
898
904
.10.1016/j.jse.2008.05.044
23.
Piovesan
,
D.
,
Casadio
,
M.
,
Morasso
,
P.
, and
Giannoni
,
P.
, “
Influence of Visual Feedback in the Regulation of Arm Stiffness Following Stroke
,”
Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
IEEE
, Boston, MA, pp.
8239
8242
.10.1109/IEMBS.2011.6092031
24.
Piovesan
,
D.
,
Morasso
,
P.
,
Giannoni
,
P.
, and
Casadio
,
M.
,
2013
, “
Arm Stiffness During Assisted Movement After Stroke: The Influence of Visual Feedback and Training
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
21
(
3
), pp.
454
465
.10.1109/TNSRE.2012.2226915
25.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2013
, “
Experimental Measure of Arm Stiffness During Single Reaching Movements With a Time-Frequency Analysis
,”
J. Neurophysiol.
,
110
(
10
), pp.
2484
2496
.10.1152/jn.01013.2012
26.
Schmitz
,
A.
, and
Piovesan
,
D.
, “
A Novel Methodology to Determine Optimal Active Marker Scanner Placement
,”
ASME
Paper No. IMECE2017-70285.10.1115/IMECE2017-70285
You do not currently have access to this content.