Abstract

Radiation therapy frequently involves highly customized and complex treatments, employing sophisticated equipment, that require extensive patient-specific validation to verify the accuracy of the treatment plan as part of the clinical quality assurance (QA) process. This paper introduces a novel, reconfigurable QA phantom developed for the spatial validation of radiosurgery treatments of multiple brain metastases (MBM). This phantom works in conjunction with existing electronic portal imaging detector (EPID) technology to rapidly verify MBM treatment plans with submillimeter accuracy. The device provides a 12 × 12 × 12 cm3 active volume and multiple, independently configurable markers, in the form of 3 mm diameter radiopaque spheres, which serve as surrogates for brain lesions. The device is lightweight, portable, can be setup by a single operator, and is adaptable for use with external beam radiotherapy (EBRT) techniques and stereotactic linear accelerators (LINACs). This paper presents the device design and fabrication, along with initial testing and validation results both in the laboratory, using a coordinate measuring machine (CMM) and under simulated clinical conditions, using a radiosurgery treatment plan with 15 lesions. The device has been shown to place markers in space with a 0.45 mm root-mean-square error, which is satisfactory for initial clinical use. The device is undergoing further testing under simulated clinical conditions and improvements to reduce marker positional error.

References

1.
Maliwal
,
N.
,
2017
, “
Radiotherapy: Technologies and Global Markets
,” BCC Research, Wellesley, MA, Report No. HLC176B.
2.
Wong
,
J.
,
Hird
,
A.
,
Kirou-Mauro
,
A.
,
Napolskikh
,
J.
, and
Chow
,
E.
,
2008
, “
Quality of Life in Brain Metastases Radiation Trials: A Literature Review
,”
Curr. Oncol.
,
15
(
5
), pp.
25
45
.
3.
Andrevska
,
A.
,
Knight
,
K. A.
, and
Sale
,
C. A.
,
2014
, “
The Feasibility and Benefits of Using Volumetric Arc Therapy in Patients With Brain Metastases: A Systematic Review
,”
J. Med. Radiat. Sci.
,
61
(
4
), pp.
267
276
.
4.
Bhide
,
S. A.
, and
Nutting
,
C. M.
,
2010
, “
Recent Advances in Radiotherapy
,”
BMC Med.
,
8
(
1
), p.
25
.
5.
Clark
,
G. M.
,
Popple
,
R. A.
,
Young
,
P. E.
, and
Fiveash
,
J. B.
,
2010
, “
Feasibility of Single-Isocenter Volumetric Modulated Arc Radiosurgery for Treatment of Multiple Brain Metastases
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
76
(
1
), pp.
296
302
.
6.
Khan
,
F. M.
,
2014
,
Khan's the Physics of Radiation Therapy
,
Lippincott Williams & Wilkins (LWW)
,
Philadelphia, PA
.
7.
Anderson
,
R.
,
Lamey
,
M.
,
MacPherson
,
M.
, and
Carlone
,
M.
,
2015
, “
Simulation of a Medical Linear Accelerator for Teaching Purposes
,”
J. Appl. Clin. Med. Phys.
,
16
(
3
), pp.
359
377
.
8.
Yu
,
C. X.
,
1995
, “
Intensity-Modulated Arc Therapy With Dynamic Multileaf Collimation: An Alternative to Tomotherapy
,”
Phys. Med. Biol.
,
40
(
9
), pp.
1435
1449
.
9.
Brewster
,
L.
,
Mohan
,
R.
,
Mageras
,
G.
,
Burman
,
C.
,
Leibel
,
S.
, and
Fuks
,
Z.
,
1995
, “
Three Dimensional Conformal Treatment Planning With Multileaf Collimators
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
33
(
5
), pp.
1081
1089
.
10.
Ezzell
,
G. A.
,
2017
, “
The Spatial Accuracy of Two Frameless, Linear Accelerator-Based Systems for Single-Isocenter, Multitarget Cranial Radiosurgery
,”
J. Appl. Clin. Med. Phys.
,
18
(
2
), pp.
37
43
.
11.
Huang
,
Y.
,
Chin
,
K.
,
Robbins
,
J. R.
,
Kim
,
J.
,
Li
,
H.
,
Amro
,
H.
,
Chetty
,
I. J.
,
Gordon
,
J.
, and
Ryu
,
S.
,
2014
, “
Radiosurgery of Multiple Brain Metastases With Single-Isocenter Dynamic Conformal Arcs (SIDCA)
,”
Radiother. Oncol.
,
112
(
1
), pp.
128
132
.
12.
Schell
,
M. C.
,
Bova
,
F. J.
,
Larson
,
D. A.
,
Leavitt
,
D. D.
,
Lutz
,
W. R.
,
Podgorsak
,
E. B.
, and
Wu
,
A.
,
1995
, “
Stereotactic Radiosurgery
,” Report of Task Group 42, AAPM, Inc. Woodbury, New York, Report No. 54.
13.
Mariotto
,
A. B.
,
Robin Yabroff
,
K.
,
Shao
,
Y.
,
Feuer
,
E. J.
, and
Brown
,
M. L.
,
2011
, “
Projections of the Cost of Cancer Care in the United States: 2010-2020
,”
J. Natl. Cancer Inst.
,
103
(
2
), pp.
117
128
.
14.
Van De Werf
,
E.
,
Lievens
,
Y.
,
Verstraete
,
J.
,
Pauwels
,
K.
, and
Van Den Bogaert
,
W.
,
2009
, “
Time and Motion Study of Radiotherapy Delivery: Economic Burden of Increased Quality Assurance and IMRT
,”
Radiother. Oncol.
,
93
(
1
), pp.
137
140
.
15.
Van De Werf
,
E.
,
Verstraete
,
J.
, and
Lievens
,
Y.
,
2012
, “
The Cost of Radiotherapy in a Decade of Technology Evolution
,”
Radiother. Oncol.
,
102
(
1
), pp.
148
153
.
16.
Lievens
,
Y.
,
Van Den Bogaert
,
W.
, and
Kesteloot
,
K.
,
2003
, “
Activity-Based Costing: A Practical Model for Cost Calculation in Radiotherapy
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
57
(
2
), pp.
522
535
.
17.
Low
,
D. A.
,
Moran
,
J. M.
,
Dempsey
,
J. F.
,
Dong
,
L.
, and
Oldham
,
M.
,
2011
, “
Dosimetry Tools and Techniques for IMRT
,”
Med. Phys.
,
38
(
3
), pp.
1313
1338
.
18.
Klein
,
E. E.
,
Hanley
,
J.
,
Bayouth
,
J.
,
Yin
,
F.-F.
,
Simon
,
W.
,
Dresser
,
S.
,
Serago
,
C.
,
Aguirre
,
F.
,
Ma
,
L.
,
Arjomandy
,
B.
,
Liu
,
C.
,
Sandin
,
C.
, and
Holmes
,
T.
,
2009
, “
Task Group 142 Report: Quality Assurance of Medical Accelerators
,”
Med. Phys.
,
36
(
9
), pp.
4197
4212
.
19.
Zygmanski
,
P.
,
Wagar
,
M.
,
Maryanski
,
M.
, and
Hacker
,
F.
,
2018
, “
Current Limitations and Emerging Solutions for Quality Assurance (QA) of Single-Isocenter VMAT Treatment of Multiple Brain Metastases (MBM)
,”
Med Phys.
,
45
(
6
), pp.
E283
E283
.
20.
Sumida
,
I.
,
Yamaguchi
,
H.
,
Kizaki
,
H.
,
Koizumi
,
M.
,
Ogata
,
T.
,
Takahashi
,
Y.
, and
Yoshioka
,
Y.
,
2012
, “
Quality Assurance of MLC Leaf Position Accuracy and Relative Dose Effect at the MLC Abutment Region Using an Electronic Portal Imaging Device
,”
J. Radiat. Res.
,
53
(
5
), pp.
798
806
.
21.
Bäck
,
A.
,
2015
, “
Quasi 3D Dosimetry (EPID, Conventional 2D/3D Detector Matrices)
,”
J. Phys. Conf. Ser.
,
573
(
1
), p.
012012
.
22.
Rowshanfarzad
,
P.
,
Sabet
,
M.
,
Barnes
,
M. P.
,
O'Connor
,
D. J.
, and
Greer
,
P. B.
,
2012
, “
EPID-Based Verification of the MLC Performance for Dynamic IMRT and VMAT
,”
Med. Phys.
,
39
(
10
), pp.
6192
6207
.
23.
Niroomand-Rad
,
A.
,
Blackwell
,
C. R.
,
Coursey
,
B. M.
,
Gall
,
K. P.
,
Galvin
,
J. M.
,
McLaughlin
,
W. L.
,
Meigooni
,
A. S.
,
Nath
,
R.
,
Rodgers
,
J. E.
, and
Soares
,
C. G.
,
1998
, “
Radiochromic Film Dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55
,”
Med. Phys.
,
25
(
11
), pp.
2093
2115
.
24.
Baldock
,
C.
,
Deene
,
Y. D.
,
Doran
,
S.
,
Ibbott
,
G.
,
Jirasek
,
A.
,
Lepage
,
M.
,
Oldham
,
M.
, and
Schreiner
,
L. J.
,
2011
, “
Topical Review: Polymer Gel Dosimetry
,”
Phys. Med. Biol.
,
55
(
5
), pp.
1
87
.
25.
Schyns
,
L. E.
,
Persoon
,
L. C.
,
Podesta
,
M.
,
Van Elmpt
,
W. J.
, and
Verhaegen
,
F.
,
2016
, “
Time-Resolved Versus Time-Integrated Portal Dosimetry: The Role of an Object's Position With Respect to the Isocenter in Volumetric Modulated Arc Therapy
,”
Phys. Med. Biol.
,
61
(
10
), pp.
3969
3984
.
26.
Bawazeer
,
O.
,
Herath
,
S.
,
Sarasanandarajah
,
S.
, and
Deb
,
P.
,
2015
, “
World Congress on Medical Physics and Biomedical Engineering, June 7–12, 2015, Toronto, Canada
,”
IFMBE Proc.
,
51
, pp.
553
556
.
27.
Watanabe
,
Y.
,
Warmington
,
L.
, and
Gopishankar
,
N.
,
2017
, “
Three-Dimensional Radiation Dosimetry Using Polymer Gel and Solid Radiochromic Polymer: From Basics to Clinical Applications
,”
World J. Radiol.
,
9
(
3
), pp.
112
125
.
28.
Rosca
,
F.
,
Zygmanski
,
P.
,
Lorenz
,
F.
,
Hacker
,
F.
,
Chin
,
L.
,
Friesen
,
S.
,
Petsuksiri
,
J.
,
Shanmugham
,
L.
, and
Ramakrishna
,
N.
,
2005
, “
An MLC-Based Linac QA Procedure for the Characterization of Radiation Isocenter and Room Lasers' Position
,”
Med. Phys.
,
32
(
6
), p.
2040
.
29.
Xu
,
Y.
,
Silverman
,
J. S.
,
Du
,
K. L.
,
Das
,
I. J.
, and
Kondziolka
,
D.
,
2017
, “
Patient Positioning Accuracy in Stereotactic Radiosurgery With Mask Fixation and Cone Beam CT
,”
Int. J. Radiat. Oncol.
,
99
(
2
), pp.
E740
E741
.
30.
Teo
,
T. J.
, and
Slocum
,
A. H.
,
2017
, “
Principle of Elastic Averaging for Rapid Precision Design
,”
Precis. Eng.
,
49
, pp.
146
159
.
31.
Willoughby
,
P.
,
2005
, “
Elastically Averaged Precision Alignment
,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
32.
Kharadi
,
F. H.
,
Jadhav
,
M. S.
,
Kanhurkar
,
S. D.
,
Pereira
,
P. A.
,
Bhojwani
,
V. K.
, and
Phadkule
,
S.
,
2015
, “
Selection of High Performing Geometry in Flexure Bearings for Linear Compressor Applications Using FEA
,”
Int. J. Sci. Technol. Res.
,
4
(
1
), pp.
170
173
.http://www.ijstr.org/final-print/jan2015/Selection-Of-High-Performing-Geometry-In-Flexure-Bearings-For-Linear-Compressor-Applications-Using-Fea.pdf
33.
Awtar
,
S.
,
2004
, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
34.
Slocum
,
A.
,
2010
, “
Kinematic Couplings: A Review of Design Principles and Applications
,”
Int. J. Mach. Tools Manuf.
,
50
(
4
), pp.
310
327
.
35.
Ryan Vallance
,
R.
,
Morgan
,
C.
, and
Slocum
,
A. H.
,
2004
, “
Precisely Positioning Pallets in Multi-Station Assembly Systems
,”
Precis. Eng.
,
28
(
2
), pp.
218
231
.
You do not currently have access to this content.