Abstract

Many medical treatments such as brachytherapy, thermal ablation, and biopsy are performed using percutaneous needle-based procedures. The success of these procedures highly depends on accurate placement of the needle tip at target positions. A novel active needle was designed and developed in this work that can steer inside the tissue via a shape memory alloy (SMA) actuator attached to its body. With actuation and control offered by the actuator, the active needle can reach the target positions with more accuracy, and thereby potential improvement in clinical outcomes. An integrated system was also developed to robotically operate the active needle insertion. The performance of the active needle was evaluated with finite element methods and experimental tests on a fabricated prototype in air. Active needle insertion tests in a tissue phantom were also performed to evaluate the performance of the active needle. The deflection in air and tissue phantom demonstrated the capability of the active needle to reach target positions.

References

References
1.
Phelan
,
S.
,
O'Doherty
,
A.
,
Hill
,
A.
, and
Quinn
,
C. M.
,
2006
, “
Epithelial Displacement During Breast Needle Core Biopsy Causes Diagnostic Difficulties in Subsequent Surgical Excision Specimens
,”
J. Clin. Pathol.
,
60
(
4
), pp.
373
376
.10.1136/jcp.2006.036996
2.
Nag
,
S.
,
Beyer
,
D.
,
Friedland
,
J.
,
Grimm
,
P.
, and
Nath
,
R.
,
1999
, “
American Brachytherapy Society (ABS) Recommendations for Transperineal Permanent Brachytherapy of Prostate Cancer
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
44
(
4
), pp.
789
799
.10.1016/S0360-3016(99)00069-3
3.
Miyano
,
T.
,
Tobinaga
,
Y.
,
Kanno
,
T.
,
Matsuzaki
,
Y.
,
Takeda
,
H.
,
Wakui
,
M.
, and
Hanada
,
K.
,
2005
, “
Sugar Micro Needles as Transdermic Drug Delivery System
,”
Biomed. Microdevices
,
7
(
3
), pp.
185
188
.10.1007/s10544-005-3024-7
4.
Youk
,
J. H.
,
Kim
,
E. K.
,
Kim
,
M. J.
,
Kwak
,
J. Y.
, and
Son
,
E. J.
,
2010
, “
Analysis of False-Negative Results After US-Guided 14-Gauge Core Needle Breast Biopsy
,”
Eur. Radiol.
,
20
(
4
), pp.
782
789
.10.1007/s00330-009-1632-y
5.
Volpe
,
A.
,
Kachura
,
J. R.
,
Geddie
,
W. R.
,
Evans
,
A. J.
,
Gharajeh
,
A.
,
Saravanan
,
A.
, and
Jewett
,
M. A. S.
,
2007
, “
Techniques, Safety and Accuracy of Sampling of Renal Tumors by Fine Needle Aspiration and Core Biopsy
,”
J. Urol.
,
178
(
2
), pp.
379
386
.10.1016/j.juro.2007.03.131
6.
Merrick
,
G. S.
,
Butler
,
W. M.
,
Dorsey
,
A. T.
, and
Walbert
,
H. L.
,
1998
, “
Influence of Timing on the Dosimetric Analysis of Transperineal Ultrasound-Guided, Prostatic Conformal Brachytherapy
,”
Radiat. Oncol. Investig.
,
6
(
4
), pp.
182
190
.10.1002/(SICI)1520-6823(1998)6:4<182::AID-ROI6>3.0.CO;2-U
7.
NIH
,
2016
, “
SEER Cancer Statistics Factsheets: Prostate Cancer
,” National Cancer Institute, Bethesda, MD, accessed Aug. 20, 2019, http://seer.cancer.gov/statfacts/html/prost.html
8.
Weir
,
H. K.
,
Thompson
,
T. D.
,
Soman
,
A.
,
Møller
,
B.
, and
Leadbetter
,
S.
,
2015
, “
The Past, Present, and Future of Cancer Incidence in the United States: 1975 Through 2020
,”
Cancer
,
121
(
11
), pp.
1827
1837
.10.1002/cncr.29258
9.
Krempien
,
R.
,
Hassfeld
,
S.
,
Kozak
,
J.
,
Tuemmler
,
H.-P.
,
Däuber
,
S.
,
Treiber
,
M.
,
Debus
,
J.
, and
Harms
,
W.
,
2004
, “
Frameless Image Guidance Improves Accuracy in Three-Dimensional Interstitial Brachytherapy Needle Placement
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
60
(
5
), pp.
1645
1651
.10.1016/j.ijrobp.2004.07.670
10.
Podder
,
T. K.
,
Dicker
,
A. P.
,
Hutapea
,
P.
,
Darvish
,
K.
, and
Yu
,
Y.
,
2012
, “
A Novel Curvilinear Approach for Prostate Seed Implantation
,”
J. Med. Phys.
,
39
(
4
), pp.
1887
1892
.10.1118/1.3694110
11.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
.10.1177/0278364910369714
12.
van de Berg
,
N. J.
,
van Gerwen
,
D. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2015
, “
Design Choices in Needle Steering—A Review
,”
Mechatronics, IEEE/ASME Trans.
,
20
(
5
), pp.
2172
2183
.10.1109/TMECH.2014.2365999
13.
Datla
,
N. V.
,
Konh
,
B.
,
Honarvar
,
M.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
A Model to Predict Deflection of Bevel-Tipped Active Needle Advancing in Soft Tissue
,”
Med. Eng. Phys.
,
36
(
3
), pp.
285
293
.10.1016/j.medengphy.2013.11.006
14.
Datla
,
N. V.
,
Konh
,
B.
,
Koo
,
J.
,
Daniel
,
W. C.
,
Yu
,
Y.
,
Dicker
,
A. P.
,
Podder
,
T. K.
,
Darvish
,
K.
, and
Hutapea
,
P.
,
2014
, “
Polyacrylamide Phantom for Self-Actuating Needle-Tissue Interaction Studies
,”
Med. Eng. Phys.
,
36
(
1
), pp.
140
145
.10.1016/j.medengphy.2013.07.004
15.
Roesthuis
,
R. J.
,
Abayazid
,
M.
, and
Misra
,
S.
,
2012
, “
Mechanics-Based Model for Predicting in-Plane Needle Deflection With Multiple Bends
,”
Fourth IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioROB
), Rome, Italy, June 24–27, pp.
69
74
.10.1109/BioRob.2012.6290829
16.
Konh
,
B.
,
Honarvar
,
M.
,
Darvish
,
K.
, and
Hutapea
,
P.
,
2017
, “
Simulation and Experimental Studies in Needle–Tissue Interactions
,”
J. Clin. Monit. Comput.
,
31
(
4
), pp.
861
872
.10.1007/s10877-016-9909-6
17.
Swensen
,
J. P.
,
Lin
,
M.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2014
, “
Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance
,”
IEEE Trans. Biomed. Eng.
,
61
(
11
), pp.
2707
2717
.10.1109/TBME.2014.2326161
18.
Reed
,
K. B.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2009
, “
Modeling and Control of Needles With Torsional Friction
,”
IEEE Trans. Biomed. Eng.
,
56
(
12
), pp.
2905
2916
.10.1109/TBME.2009.2029240
19.
Ayvali
,
E.
,
Liang
,
C. P.
,
Ho
,
M.
,
Chen
,
Y.
, and
Desai
,
J. P.
,
2012
, “
Towards a Discretely Actuated Steerable Cannula for Diagnostic and Therapeutic Procedures
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
588
603
.10.1177/0278364912442429
20.
Black
,
R. J.
,
Ryu
,
S.
,
Moslehi
,
B.
, and
Costa
,
J. M.
,
2014
, “
Characterization of Optically Actuated MRI-Compatible Active Needles for Medical Interventions
,”
SPIE
Paper No. 90580J.10.1117/12.2058475
21.
Abolhassani
,
N.
,
Patel
,
R.
, and
Ayazi
,
F.
,
2007
, “
Needle Control Along Desired Tracks in Robotic Prostate Brachytherapy
,”
IEEE International Conference on Systems, Man and Cybernetics
(
ICSMC
), Quebec, Canada, Oct. 7–10, pp.
3361
3366
.10.1109/ICSMC.2007.4413819
22.
Majewicz
,
A.
,
Marra
,
S. P.
,
van Vledder
,
M. G.
,
Lin
,
M.
,
Choti
,
M. A.
,
Song
,
D. Y.
, and
Okamura
,
A. M.
,
2012
, “
Behavior of Tip-Steerable Needles in Ex Vivo and In Vivo Tissue
,”
IEEE Transactions on Bio-Medical Engineering
(
TBME
), Quebec, Canada, June 13, pp.
2705
2715
.10.1109/TBME.2012.2204749
23.
Podder
,
T. K.
,
Clark
,
D.
,
Sherman
,
J.
,
Fuller
,
D.
,
Messing
,
E.
,
Rubens
,
D.
,
Strang
,
J.
,
Brasacchio
,
L.
,
Liao
,
W. S. N.
, and
Yu
,
Y.
,
2006
, “
In Vivo Motion and Force Measurement of Surgical Needle Intervention During Prostate Brachytherapy
,”
J. Med. Phys.
,
33
(
8
), pp.
2915
2922
.10.1118/1.2218061
24.
Duindam
,
V.
,
Alterovitz
,
R.
,
Sastry
,
S.
, and
Goldberg
,
K.
,
2008
, “
Screw-Based Motion Planning for Bevel-Tip Flexible Needles in 3D Environments With Obstacles
,”
IEEE International Conference on Robotics and Automation
(
ROBOT
), Pasadena, CA, May 19–23, pp.
2483
2488
.10.1109/ROBOT.2008.4543586
25.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2013
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
.10.1109/TBME.2012.2230001
26.
Ryu
,
S. C.
,
Renaud
,
P.
,
Black
,
R. J.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2011
, “
Feasibility Study of an Optically Actuated MR-Compatible Active Needle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
2564
2569
.10.1109/IROS.2011.6094945
27.
Konh
,
B.
,
Honarvar
,
M.
, and
Hutapea
,
P.
,
2013
, “
Application of SMA Wire for an Active Steerable Cannula
,”
ASME
Paper No. SMASIS2013-3142.10.1115/SMASIS2013-3142
28.
Lagoudas
,
D. C.
,
2008
,
Shape Memory Alloys: Modeling and Engineering Applications
,
Springer
,
New York
.
29.
Honarvar
,
M.
,
Datla
,
N. V.
,
Konh
,
B.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
Study of Unrecovered Strain and Critical Stresses in One-Way Shape Memory Nitinol
,”
J. Mater. Eng. Perform.
,
23
(
8
), pp.
2885
2893
.10.1007/s11665-014-1077-6
30.
Elahinia
,
M. H.
, and
Ashrafioun
,
H.
,
2016
, “
Control of Shape Memory Alloy Actuators
,”
Shape Memory Alloy Actuators: Design, Fabrication and Experimental Evaluation
,
Wiley
,
West Sussex, UK
.
31.
Scali
,
M.
,
Pusch
,
T. P.
,
Breedveld
,
P.
, and
Dodou
,
D.
,
2017
, “
Needle-Like Instruments for Steering Through Solid Organs: A Review of the Scientific and Patent Literature
,”
Proc. Inst. Mech. Eng., Part H
,
231
(
3
), pp.
250
265
.10.1177/0954411916672149
32.
Konh
,
B.
,
Lee
,
H. H.
,
Martin
,
V. P.
,
Zhao
,
V.
,
Han
,
D.
,
Lee
,
H.
, and
Hutapea
,
P.
,
2015
, “
Design, Development and Evaluation of a Two Way Actuated Steerable Needle
,”
ASME
Paper No. SMASIS2015-9084.10.1115/SMASIS2015-9084
33.
Konh
,
B.
, and
Hutapea
,
P.
,
2013
, “
Finite Element Simulation of an Active Surgical Needle for Prostate Brachytherapy
,”
First Annual Frontiers in Medical Devices: Applications of Computer Modeling and Simulation
, Washington, DC, Sept. 11–13, pp.
1
2
.
34.
Konh
,
B.
,
Honarvar
,
M.
, and
Hutapea
,
P.
,
2015
, “
Design Optimization Study of a Shape Memory Alloy Active Needle for Biomedical Applications
,”
J. Med. Eng. Phys.
,
37
(
5
), pp.
469
477
.10.1016/j.medengphy.2015.02.013
35.
Konh
,
B.
,
Datla
,
N. V.
, and
Hutapea
,
P.
,
2015
, “
Feasibility of SMA Wire Actuation for an Active Steerable Cannula
,”
ASME J. Med. Devices
,
9
(
2
), p.
021002
.10.1115/1.4029557
You do not currently have access to this content.