Abstract

Many individuals with lower limb amputations or neuromuscular impairments face mobility challenges attributable to suboptimal assistive device design. Forward dynamic modeling and simulation of human walking using conventional biomechanical gait models offer an alternative to intuition-based assistive device design, providing insight into the biomechanics underlying pathological gait. Musculoskeletal models enable better understanding of prosthesis and/or exoskeleton contributions to the human musculoskeletal system, and device and user contributions to both body support and propulsion during gait. This paper reviews current literature that have used forward dynamic simulation of clinical population musculoskeletal models to perform assistive device design optimization using optimal control, optimal tracking, computed muscle control (CMC) and reflex-based control. Musculoskeletal model complexity and assumptions inhibit forward dynamic musculoskeletal modeling in its current state, hindering computational assistive device design optimization. Future recommendations include validating musculoskeletal models and resultant assistive device designs, developing less computationally expensive forward dynamic musculoskeletal modeling methods, and developing more efficient patient-specific musculoskeletal model generation methods to enable personalized assistive device optimization.

References

References
1.
Guan
,
X.
,
Ji
,
L.
,
Wang
,
R.
, and
Huang
,
W.
,
2016
, “
Optimization of an Unpowered Energy-Stored Exoskeleton for Patients With Spinal Cord Injury
,”
38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Orlando, FL, pp.
5030
5033
.10.1109/EMBC.2016.7591857
2.
Johnson
,
W. B.
,
Fatone
,
S.
, and
Gard
,
S. A.
,
2009
, “
Walking Mechanics of Persons Who Use Reciprocating Gait Orthoses
,”
J. Rehabil. Res. Dev.
,
46
(
3
), pp.
435
446
.10.1682/JRRD.2008.01.0017
3.
Hegarty
,
A. K.
,
Petrella
,
A. J.
,
Kurz
,
M. J.
, and
Silverman
,
A. K.
,
2017
, “
Evaluating the Effects of Ankle-Foot Orthosis Mechanical Property Assumptions on Gait Simulation Muscle Force Results
,”
ASME J. Biomech. Eng.
,
139
(
3
), p.
031009
.10.1115/1.4035472
4.
Knutson
,
L. M.
, and
Clark
,
D. E.
,
1991
, “
Orthotic Devices for Ambulation in Children With Cerebral Palsy and Myelomeningocele
,”
Phys. Ther.
,
71
(
12
), pp.
947
960
.10.1093/ptj/71.12.947
5.
Fong
,
A. J.
,
Roy
,
R. R.
,
Ichiyama
,
R. M.
,
Lavrov
,
I.
,
Courtine
,
G.
,
Gerasimenko
,
Y.
,
Tai
,
Y. C.
,
Burdick
,
J.
, and
Edgerton
,
V. R.
,
2009
, “
Recovery of Control of Posture and Locomotion After a Spinal Cord Injury: Solutions Staring Us in the Face
,”
Prog. Brain Res.
,
175
(
09
), pp.
393
418
.10.1016/S0079-6123(09)17526-X
6.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2003
, “
Biomechanics and Muscle Coordination of Human Walking—Part II: Lessons From Dynamical Simulations and Clinical Implications
,”
Gait Posture
,
17
(
1
), pp.
1
17
.10.1016/S0966-6362(02)00069-3
7.
Sartori
,
M.
,
Llyod
,
D. G.
, and
Farina
,
D.
,
2016
, “
Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies
,”
IEEE Trans. Biomed. Eng.
,
63
(
5
), pp.
879
893
.10.1109/TBME.2016.2538296
8.
Schmalz
,
T.
,
Blumentritt
,
S.
, and
Jarasch
,
R.
,
2002
, “
Energy Expenditure and Biomechanical Characteristics of Lower Limb Amputee Gait
,”
Gait Posture
,
16
(
3
), pp.
255
263
.10.1016/S0966-6362(02)00008-5
9.
Norvell
,
D. C.
,
Czerniecki
,
J. M.
,
Reiber
,
G. E.
,
Maynard
,
C.
,
Pecoraro
,
J. A.
, and
Weiss
,
N. S.
,
2005
, “
The Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis Among Veteran Traumatic Amputees and Nonamputees
,”
Arch. Phys. Med. Rehabil.
,
86
(
3
), pp.
487
493
.10.1016/j.apmr.2004.04.034
10.
Chien
,
M. S. C.-H.
,
Erdemir
,
A.
,
van den Bogert
,
A. J.
, and
Smith
,
W. A.
,
2014
, “
Development of Dynamic Models of the Mauch Prosthetic Knee for Prospective Gait Simulation
,”
J. Biomech.
,
47
(
12
), pp.
3178
3184
.10.1016/j.jbiomech.2014.06.011
11.
Kulkarni
,
J.
,
Gaine
,
W. J.
,
Buckley
,
J. G.
,
Rankine
,
J. J.
, and
Adams
,
J.
,
2005
, “
Chronic Low Back Pain in Traumatic Lower Limb Amputees
,”
Clin. Rehabil.
,
19
(
1
), pp.
81
86
.10.1191/0269215505cr819oa
12.
Silverman
,
A. K.
,
Fey
,
N. P.
,
Portillo
,
A.
,
Walden
,
J. G.
,
Bosker
,
G.
, and
Neptune
,
R. R.
,
2008
, “
Compensatory Mechanisms in Below-Knee Amputee Gait in Response to Increasing Steady-State Walking Speeds
,”
Gait Posture
,
28
(
4
), pp.
602
609
.10.1016/j.gaitpost.2008.04.005
13.
Hurley
,
G. R. B.
,
Mckenney
,
R.
,
Robinson
,
M.
,
Zadravec
,
M.
, and
Pierrynowski
,
M. R.
,
1990
, “
The Role of the Contralateral Limb in Below-Knee Amputee Gait
,”
Prosthet. Orthot. Int.
,
14
(
1
), pp.
33
42
.10.3109/03093649009080314
14.
Sagawa
,
Y.
,
Turcot
,
K.
,
Armand
,
S.
,
Thevenon
,
A.
,
Vuillerme
,
N.
, and
Watelain
,
E.
,
2011
, “
Biomechanics and Physiological Parameters During Gait in Lower-Limb Amputees: A Systematic Review
,”
Gait Posture
,
33
(
4
), pp.
511
526
.10.1016/j.gaitpost.2011.02.003
15.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2012
, “
Optimization of Prosthetic Foot Stiffness to Reduce Metabolic Cost and Intact Knee Loading During Below-Knee Amputee Walking: A Theoretical Study
,”
ASME J. Biomech. Eng.
,
134
(
11
), p.
111005
.10.1115/1.4007824
16.
Maïmoun
,
L.
,
Fattal
,
C.
,
Micallef
,
J.-P.
,
Peruchon
,
E.
, and
Rabischong
,
P.
,
2006
, “
Bone Loss in Spinal Cord-Injured Patients: From Physiopathology to Therapy
,”
Spinal Cord
,
44
(
4
), pp.
203
210
.10.1038/sj.sc.3101832
17.
Rosenstein
,
B. D.
,
Greene
,
W. B.
, and
Herrington
,
R. T.
,
2008
, “
Bone Density in Myelomeningocele: The Effects of Ambulatory Status and Other Factors
,”
Dev. Med. Child Neurol.
,
29
(
4
), pp.
486
494
.10.1111/j.1469-8749.1987.tb02508.x
18.
Zmitrewicz
,
R. J.
,
Neptune
,
R. R.
, and
Sasaki
,
K.
,
2007
, “
Mechanical Energetic Contributions From Individual Muscles and Elastic Prosthetic Feet During Symmetric Unilateral Transtibial Amputee Walking: A Theoretical Study
,”
J. Biomech.
,
40
(
8
), pp.
1824
1831
.10.1016/j.jbiomech.2006.07.009
19.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2013
, “
Altering Prosthetic Foot Stiffness Influences Foot and Muscle Function During Below-Knee Amputee Walking: A Modeling and Simulation Analysis
,”
J. Biomech.
,
46
(
4
), pp.
637
644
.10.1016/j.jbiomech.2012.11.051
20.
Markowitz
,
J.
,
Krishnaswamy
,
P.
,
Eilenberg
,
M. F.
,
Endo
,
K.
,
Barnhart
,
C.
, and
Herr
,
H.
,
2011
, “
Speed Adaptation in a Powered Transtibial Prosthesis Controlled With a Neuromuscular Model
,”
Philos. Trans. R. Soc. B Biol. Sci.
,
366
(
1570
), pp.
1621
1631
.10.1098/rstb.2010.0347
21.
Andrysek
,
J.
,
Naumann
,
S.
, and
Cleghorn
,
W. L.
,
2004
, “
Design Characteristics of Pediatric Prosthetic Knees
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
4
), pp.
369
378
.10.1109/TNSRE.2004.838444
22.
Sumiya
,
T.
,
Suzuki
,
Y.
, and
Kasahara
,
T.
,
1996
, “
Stiffness Control in Posterior-Type Plastic Ankle-Foot Orthoses: Effect of Ankle Trimline—Part 2: Orthosis Characteristics and Orthosis/Patient Matching
,”
Prosthet. Orthot. Int.
,
20
(
2
), pp.
132
137
.10.3109/03093649609164431
23.
Yamamoto
,
S.
,
Miyazaki
,
S.
, and
Kubota
,
T.
,
1993
, “
Quantification of the Effect of the Mechanical Property of Ankle-Foot Orthoses on Hemiplegic Gait
,”
Gait Posture
,
1
(
1
), pp.
27
34
.10.1016/0966-6362(93)90040-8
24.
Crabtree
,
C. A.
, and
Higginson
,
J. S.
,
2009
, “
Modeling Neuromuscular Effects of Ankle Foot Orthoses (AFOs) in Computer Simulations of Gait
,”
Gait Posture
,
29
(
1
), pp.
65
70
.10.1016/j.gaitpost.2008.06.004
25.
Jackson
,
R. W.
,
Dembia
,
C. L.
,
Delp
,
S. L.
, and
Collins
,
S. H.
,
2017
, “
Muscle–Tendon Mechanics Explain Unexpected Effects of Exoskeleton Assistance on Metabolic Rate During Walking
,”
J. Exp. Biol.
,
220
(
11
), pp.
2082
2095
.10.1242/jeb.150011
26.
Karavas
,
N.
,
Ajoudani
,
A.
,
Tsagarakis
,
N.
,
Saglia
,
J.
,
Bicchi
,
A.
, and
Caldwell
,
D.
,
2015
, “
Tele-Impedance Based Assistive Control for a Compliant Knee Exoskeleton
,”
Rob. Auton. Syst.
,
73
, pp.
78
90
.10.1016/j.robot.2014.09.027
27.
Lim
,
B.
,
Hyoung
,
S.
,
Lee
,
J.
,
Seo
,
K.
,
Jang
,
J.
, and
Shim
,
Y.
,
2017
, “
Simulating Gait Assistance of a Hip Exoskeleton: Case Studies for Ankle Pathologies
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, pp.
1022
1027
.10.1109/ICRA.2017.7989123
28.
Lim
,
B.
,
Hyung
,
S.
,
Kim
,
K.
,
Lee
,
J.
,
Jang
,
J.
, and
Shim
,
Y.
,
2016
, “
Simulating Gait Assistance of a Hip Exoskeleton: Feasibility Studies for Ankle Muscle Weaknesses
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, South Korea, pp.
5664
5669
.10.1109/IROS.2016.7759833
29.
Safavi
,
S.
,
Ghafari
,
A. S.
, and
Meghdari
,
A.
,
2011
, “
Design of an Optimum Torque Actuator for Augmenting Lower Extremity Exoskeletons in Biomechanical Framework
,”
2011 IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Phuket, Thailand, pp.
1979
1983
.10.1109/ROBIO.2011.6181581
30.
Wu
,
A. R.
,
Dzeladini
,
F.
,
Brug
,
T. J. H.
,
Tamburella
,
F.
,
Tagliamonte
,
N. L.
,
van Asseldonk
,
E. H. F.
,
van der Kooij
,
H.
, and
Ijspeert
,
A. J.
,
2017
, “
An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects With Spinal Cord Injury
,”
Front. Neurorobot.
,
11
(
30
), pp.
1
14
.10.3389/fnbot.2017.00030
31.
Andrysek
,
J.
,
Naumann
,
S.
, and
Cleghorn
,
W. L.
,
2005
, “
Design and Quantitative Evaluation of a Stance-Phase Controlled Prosthetic Knee Joint for Children
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
4
), pp.
437
443
.10.1109/TNSRE.2005.856071
32.
Arch
,
E. S.
,
Stanhope
,
S. J.
, and
Higginson
,
J. S.
,
2016
, “
Passive-Dynamic Ankle–Foot Orthosis Replicates Soleus but Not Gastrocnemius Muscle Function During Stance in Gait: Insights for Orthosis Prescription
,”
Prosthet. Orthot. Int.
,
40
(
5
), pp.
606
616
.10.1177/0309364615592693
33.
Shandiz
,
M. A.
,
Farahmand
,
F.
,
Osman
,
N. A. A.
, and
Zohoor
,
H.
,
2013
, “
A Robotic Model of Transfemoral Amputee Locomotion for Design Optimization of Knee Controllers
,”
Int. J. Adv. Robot. Syst.
,
10
(
3
), pp.
1
10
.10.5772/52855
34.
Colasanto
,
L.
,
Van Der Noot
,
N.
, and
Ijspeert
,
A. J.
,
2015
, “
Bio-Inspired Walking for Humanoid Robots Using Feet With Human-Like Compliance and Neuromuscular Control
,”
IEEE-RAS International Conference on Humanoid Robots
, Seoul, South Korea, pp.
26
32
.10.1109/HUMANOIDS.2015.7363518
35.
Handford
,
M. L.
, and
Srinivasan
,
M.
,
2016
, “
Robotic Lower Limb Prosthesis Design Through Simultaneous Computer Optimizations of Human and Prosthesis Costs
,”
Sci. Rep.
,
6
(
19983
), pp.
1
7
.10.1038/srep19983
36.
Kirsch
,
N. A.
,
Alibeji
,
N. A.
,
Redfern
,
M.
, and
Sharma
,
N.
,
2017
, “
Dynamic Optimization of a Hybrid Gait Neuroprosthesis to Improve Efficiency and Walking Duration: A Simulation Study
,”
Biosystems & Biorobotics
,
J.
Ibáñez
,
J.
González-Vargas
,
J. M.
Azorín
,
M.
Akay
, and
J. L.
Pons
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
687
691
.
37.
Arelekatti
,
V. N. M.
, and
Winter
,
A. G.
,
2015
, “
Design of a Fully Passive Prosthetic Knee Mechanism for Transfemoral Amputees in India
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Singapore, pp.
350
356
.10.1109/ICORR.2015.7281224
38.
Pejhan
,
S.
,
Farahmand
,
F.
, and
Parnianpour
,
M.
,
2008
, “
Design Optimization of an Above-Knee Prosthesis Based on the Kinematics of Gait
,”
30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEMBS
), Vancouver, Canada, pp.
4274
4277
.10.1109/IEMBS.2008.4650154
39.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2012
, “
Muscle and Prosthesis Contributions to Amputee Walking Mechanics: A Modeling Study
,”
J. Biomech.
,
45
(
13
), pp.
2271
2278
.10.1016/j.jbiomech.2012.06.008
40.
Pickle
,
N. T.
,
Grabowski
,
A. M.
,
Jeffers
,
J. R.
, and
Silverman
,
A. K.
,
2017
, “
The Functional Roles of Muscles, Passive Prostheses, and Powered Prostheses During Sloped Walking in People With a Transtibial Amputation
,”
ASME J. Biomech. Eng.
,
139
(
11
), p.
111005
.10.1115/1.4037938
41.
Stanev
,
D.
, and
Moustakas
,
K.
,
2019
, “
Modeling Musculoskeletal Kinematic and Dynamic Redundancy Using Null Space Projection
,”
PLoS One
,
14
(
1
), p.
e0209171
.10.1371/journal.pone.0209171
42.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.10.1016/S0021-9290(01)00105-1
43.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking—Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.10.1016/S0966-6362(02)00068-1
44.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open Source to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
45.
Shourijeh
,
M. S.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2017
, “
Forward Static Optimization in Dynamic Simulation of Human Musculoskeletal Systems: A Proof-of-Concept Study
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051005
.10.1115/1.4036195
46.
Sartori
,
M.
,
Durandau
,
G.
, and
Farina
,
D.
,
2017
, “
Neuromusculoskeletal Models of Human-Machine Interaction in Individuals Wearing Lower Limb Assistive Technologies
,”
Third International Conference on NeuroRehabilitation
(
ICNR2016
), Oct. 18–21, Segovia, Spain, pp.
827
831
.10.1007/978-3-319-46669-9_135
47.
Grabke
,
E. P.
, and
Andrysek
,
J.
,
2018
, “
Applications of Musculoskeletal Modelling and Simulation for Lower-Limb Prosthesis Design Optimization
,”
ASME
Paper No. DETC2018-85957. 10.1115/DETC2018-85957
48.
Geyer
,
H.
,
Thatte
,
N.
, and
Duan
,
H.
,
2017
, “
Toward Balance Recovery With Active Leg Prostheses Using Neuromuscular Model Control
,”
Biosyst. Biorobotics
,
15
, pp.
649
652
.http://dx.doi.org/10.1007/978-3-319-46669-9_107
49.
Suzuki
,
Y.
,
2010
, “
Dynamic Optimization of Transfemoral Prosthesis During Swing Phase With Residual Limb Model
,”
Prosthet. Orthot. Int.
,
34
(
4
), pp.
428
438
.10.3109/03093646.2010.484829
50.
Thatte
,
N.
, and
Geyer
,
H.
,
2014
, “
Towards Local Reflexive Control of a Powered Transfemoral Prosthesis for Robust Amputee Push and Trip Recovery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
2069
2074
.10.1109/IROS.2014.6942839
51.
Thatte
,
N.
, and
Geyer
,
H.
,
2016
, “
Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control
,”
IEEE Trans. Biomed. Eng.
,
63
(
5
), pp.
904
913
.10.1109/TBME.2015.2472533
52.
Dembia
,
C. L.
,
Silder
,
A.
,
Uchida
,
T. K.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2017
, “
Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Walking With Heavy Loads
,”
PLoS One
,
12
(
7
), p.
e0180320
.10.1371/journal.pone.0180320
53.
Uchida
,
T. K.
,
Seth
,
A.
,
Pouya
,
S.
,
Dembia
,
C. L.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2016
, “
Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running
,”
PLoS One
,
11
(
9
), p.
e0163417
.10.1371/journal.pone.0163417
54.
Fregly
,
B. J.
,
Boninger
,
M. L.
, and
Reinkensmeyer
,
D. J.
,
2012
, “
Personalized Neuromusculoskeletal Modeling to Improve Treatment of Mobility Impairments: A Perspective From European Research Sites
,”
J. Neuroeng. Rehabil.
,
9
(
1
), pp.
1
11
.10.1186/1743-0003-9-18
55.
Selk Ghafari
,
A.
,
Meghdari
,
A.
, and
Vossoughi
,
G. R.
,
2010
, “
Biomechanical Analysis for the Study of Muscle Contributions to Support Load Carrying
,”
Proc. Inst. Mech. Eng. Part C
,
224
(
6
), pp.
1287
1298
.10.1243/09544062JMES1559
56.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
57.
Davy
,
D. T.
, and
Audu
,
M. L.
,
1987
, “
A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait
,”
J. Biomech.
,
20
(
2
), pp.
187
201
.10.1016/0021-9290(87)90310-1
58.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Engin.
,
2
(
3
), pp.
201
231
.10.1080/10255849908907988
59.
Mattes
,
S. J.
,
Martin
,
P. E.
, and
Royer
,
T. D.
,
2000
, “
Walking Symmetry and Energy Cost in Persons With Unilateral Transtibial Amputations: Matching Prosthetic and Intact Limb Inertial Properties
,”
Arch. Phys. Med. Rehabil.
,
81
(
5
), pp.
561
568
.10.1016/S0003-9993(00)90035-2
60.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), p.
381
.10.1115/1.1392310
61.
de Lasa
,
M.
,
Mordatch
,
I.
, and
Hertzmann
,
A.
,
2010
, “
Feature-Based Locomotion Controllers
,”
ACM Trans. Graph.
,
29
(
4
), p.
1
.10.1145/1778765.1781157
62.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
63.
Geyer
,
H.
, and
Herr
,
H.
,
2010
, “
A Muscle-Reflex Model That Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
3
), pp.
263
273
.10.1109/TNSRE.2010.2047592
64.
Fregly
,
B. J.
, and
Zajac
,
F. E.
,
1996
, “
A State-Space Analysis of Mechanical Energy Generation, Absorption, and Transfer During Pedaling
,”
J. Biomech.
,
29
(
1
), pp.
81
90
.10.1016/0021-9290(95)00011-9
65.
Hamner
,
S. R.
, and
Delp
,
S. L.
,
2013
, “
Muscle Contributions to Fore-Aft and Vertical Body Mass Center Accelerations Over a Range of Running Speeds
,”
J. Biomech.
,
46
(
4
), pp.
780
787
.10.1016/j.jbiomech.2012.11.024
66.
Valente
,
G.
,
Pitto
,
L.
,
Testi
,
D.
,
Seth
,
A.
,
Delp
,
S. L.
,
Stagni
,
R.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
,”
PLoS One
,
9
(
11
), p.
e112625
.10.1371/journal.pone.0112625
67.
Valente
,
G.
,
Pitto
,
L.
,
Stagni
,
R.
, and
Taddei
,
F.
,
2015
, “
Effect of Lower-Limb Joint Models on Subject-Specific Musculoskeletal Models and Simulations of Daily Motor Activities
,”
J. Biomech.
,
48
(
16
), pp.
4198
4205
.10.1016/j.jbiomech.2015.09.042
68.
Martelli
,
S.
,
Valente
,
G.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2015
, “
Sensitivity of a Subject-Specific Musculoskeletal Model to the Uncertainties on the Joint Axes Location
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
14
), pp.
1555
1563
.10.1080/10255842.2014.930134
69.
Hannah
,
I.
,
Montefiori
,
E.
,
Modenese
,
L.
,
Prinold
,
J.
,
Viceconti
,
M.
, and
Mazzà
,
C.
,
2017
, “
Sensitivity of a Juvenile Subject-Specific Musculoskeletal Model of the Ankle Joint to the Variability of Operator-Dependent Input
,”
Proc. Inst. Mech. Eng. Part H
,
231
(
5
), pp.
415
422
.10.1177/0954411917701167
70.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020905
.10.1115/1.4029304
71.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.10.1016/j.jbiomech.2005.02.010
72.
Lee
,
L.-F.
, and
Umberger
,
B. R.
,
2016
, “
Generating Optimal Control Simulations of Musculoskeletal Movement Using OpenSim and MATLAB
,”
PeerJ
,
4
, p.
e1638
.10.7717/peerj.1638
73.
Sartori
,
M.
,
Gizzi
,
L.
,
Lloyd
,
D. G.
, and
Farina
,
D.
,
2013
, “
A Musculoskeletal Model of Human Locomotion Driven by a Low Dimensional Set of Impulsive Excitation Primitives
,”
Front. Comput. Neurosci.
,
7
(
79
), pp.
1
22
.10.3389/fncom.2013.00079
74.
Esmaeilzadeh
,
H.
,
Blem
,
E.
,
St. Amant
,
R.
,
Sankaralingam
,
K.
, and
Burger
,
D.
,
2012
, “
Dark Silicon and the End of Multicore Scaling
,”
IEEE Micro
,
32
(
3
), pp.
122
134
.10.1109/MM.2012.17
75.
Freutel
,
M.
,
Schmidt
,
H.
,
Dürselen
,
L.
,
Ignatius
,
A.
, and
Galbusera
,
F.
,
2014
, “
Finite Element Modeling of Soft Tissues: Material Models, Tissue Interaction and Challenges
,”
Clin. Biomech.
,
29
(
4
), pp.
363
372
.10.1016/j.clinbiomech.2014.01.006
76.
Modenese
,
L.
,
Ceseracciu
,
E.
,
Reggiani
,
M.
, and
Lloyd
,
D. G.
,
2016
, “
Estimation of Musculotendon Parameters for Scaled and Subject Specific Musculoskeletal Models Using an Optimization Technique
,”
J. Biomech.
,
49
(
2
), pp.
141
148
.10.1016/j.jbiomech.2015.11.006
77.
Ackland
,
D. C.
,
Lin
,
Y.-C.
, and
Pandy
,
M. G.
,
2012
, “
Sensitivity of Model Predictions of Muscle Function to Changes in Moment Arms and Muscle–Tendon Properties: A Monte Carlo Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1463
1471
.10.1016/j.jbiomech.2012.02.023
78.
Maryniak
,
A.
,
Laschowski
,
B.
, and
Andrysek
,
J.
,
2018
, “
Technical Overview of Osseointegrated Transfemoral Prostheses: Orthopedic Surgery and Implant Design Centered
,”
ASME J. Eng. Sci. Med. Diagnostics Ther.
,
1
(
2
), p.
020801
.10.1115/1.4039105
79.
Dickinson
,
A. S.
,
Steer
,
J. W.
, and
Worsley
,
P. R.
,
2017
, “
Finite Element Analysis of the Amputated Lower Limb: A Systematic Review and Recommendations
,”
Med. Eng. Phys.
,
43
, pp.
1
18
.10.1016/j.medengphy.2017.02.008
80.
LaPrè
,
A. K.
,
Price
,
M. A.
,
Wedge
,
R. D.
,
Umberger
,
B. R.
, and
Sup
,
F. C.
,
2018
, “
Approach for Gait Analysis in Persons With Limb Loss Including Residuum and Prosthesis Socket Dynamics
,”
Int. J. Numer. Method. Biomed. Eng.
,
34
(
4
), pp.
1
11
.10.1002/cnm.2936
81.
Sengeh
,
D. M.
,
Moerman
,
K. M.
,
Petron
,
A.
, and
Herr
,
H.
,
2016
, “
Multi-Material 3-D Viscoelastic Model of a Transtibial Residuum From in-Vivo Indentation and MRI Data
,”
J. Mech. Behav. Biomed. Mater.
,
59
, pp.
379
392
.10.1016/j.jmbbm.2016.02.020
82.
Petron
,
A.
,
Duval
,
J.-F.
, and
Herr
,
H.
,
2017
, “
Multi-Indenter Device for In Vivo Biomechanical Tissue Measurement
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
5
), pp.
426
435
.10.1109/TNSRE.2016.2572168
83.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2015
, “
Foot–Ground Contact Modeling Within Human Gait Simulations: From Kelvin–Voigt to Hyper-Volumetric Models
,”
Multibody Syst. Dyn.
,
35
(
4
), pp.
393
407
.10.1007/s11044-015-9467-6
You do not currently have access to this content.