Assessing hemodynamics in vasculature is important for the development of cardiovascular diagnostic parameters and evaluation of medical devices. Benchtop experiments are a safe and comprehensive preclinical method for testing new diagnostic endpoints and devices within a controlled environment. Recent advances in three-dimensional (3D) printing have enhanced benchtop tests by allowing generation of patient-specific and pathophysiologic conditions. We used 3D printing, coupled with image processing and computer-aided design (CAD), to develop a patient-specific vascular test device from clinical data. The proximal pulmonary artery (PA) tree including the main, left, and right pulmonary arteries, with a stenosis within the left PA was selected as a representative anatomy for developing the vascular test device. Three test devices representing clinically relevant stenosis severities, 90%, 80%, and 70% area stenosis, were evaluated at different cardiac outputs (COs). A mock circulatory loop (MCL) generating pathophysiologic pulmonary pressure and flow was used to evaluate the hemodynamics within the devices. The dimensionless pressure drop–velocity ratio characteristic curves for the three stenosis severities were obtained. At a fixed CO, the dimensionless pressure drop increased nonlinearly with an increase in (a) the velocity ratio for a fixed stenosis severity and (b) the stenosis severity at a specific velocity ratio. The dimensionless pressure drop observed in vivo was similar (within 1%) to that measured in moderate area stenosis of 70% because both flows were viscous dominated. The hemodynamics of the 3D printed test device can be used for evaluating diagnostic endpoints and medical devices in a preclinical setting under realistic conditions.

References

References
1.
Apitz
,
C.
,
Hansmann
,
G.
, and
Schranz
,
D.
,
2016
, “
Hemodynamic Assessment and Acute Pulmonary Vasoreactivity Testing in the Evaluation of Children With Pulmonary Vascular Disease. Expert Consensus Statement on the Diagnosis and Treatment of Paediatric Pulmonary Hypertension. The European Paediatric Pulmonary Vascular Disease Network, Endorsed by ISHLT and DGPK
,”
Heart
,
102
(
Suppl. 2
), pp.
ii23
ii29
.
2.
Fang
,
J. C.
,
Ewald
,
G. A.
,
Allen
,
L. A.
,
Butler
,
J.
,
Westlake Canary
,
C. A.
,
Colvin-Adams
,
M.
,
Dickinson
,
M. G.
,
Levy
,
P.
,
Stough
,
W. G.
,
Sweitzer
,
N. K.
,
Teerlink
,
J. R.
,
Whellan
,
D. J.
,
Albert
,
N. M.
,
Krishnamani
,
R.
,
Rich
,
M. W.
,
Walsh
,
M. N.
,
Bonnell
,
M. R.
,
Carson
,
P. E.
,
Chan
,
M. C.
,
Dries
,
D. L.
,
Hernandez
,
A. F.
,
Hershberger
,
R. E.
,
Katz
,
S. D.
,
Moore
,
S.
,
Rodgers
,
J. E.
,
Rogers
,
J. G.
,
Vest
,
A. R.
, and
Givertz
,
M. M.
,
2015
, “
Advanced (Stage D) Heart Failure: A Statement From the Heart Failure Society of America Guidelines Committee
,”
J. Card. Failure
,
21
(
6
), pp.
519
534
.
3.
Nishimura
,
R. A.
,
Otto
,
C. M.
,
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Erwin
,
J. P.
,
Fleisher
,
L. A.
,
Jneid
,
H.
,
Mack
,
M. J.
,
McLeod
,
C. J.
,
O'Gara
,
P. T.
,
Rigolin
,
V. H.
,
Sundt
,
T. M.
, and
Thompson
,
A.
,
2017
, “
2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
,”
Circulation
,
70
(
2
), pp.
252
289
.
4.
Palazzini
,
M.
,
Dardi
,
F.
,
Manes
,
A.
,
Bacchi Reggiani
,
M. L.
,
Gotti
,
E.
,
Rinaldi
,
A.
,
Albini
,
A.
,
Monti
,
E.
, and
Galiè
,
N.
,
2018
, “
Pulmonary Hypertension Due to Left Heart Disease: Analysis of Survival According to the Haemodynamic Classification of the 2015 ESC/ERS Guidelines and Insights for Future Changes
,”
Eur. J. Heart Failure
,
20
(
2
), pp.
248
255
.
5.
Akin
,
S.
,
Soliman
,
O. I.
,
Constantinescu
,
A. A.
,
Akca
,
F.
,
Birim
,
O.
,
van Domburg
,
R. T.
,
Manintveld
,
O.
, and
Caliskan
,
K.
,
2016
, “
Haemolysis as a First Sign of Thromboembolic Event and Acute Pump Thrombosis in Patients With the Continuous-Flow Left Ventricular Assist Device HeartMate II
,”
Netherlands Heart J.
,
24
(
2
), pp.
134
142
.
6.
Hariharan
,
P.
,
D'Souza
,
G.
,
Horner
,
M.
,
Malinauskas
,
R. A.
, and
Myers
,
M. R.
,
2015
, “
Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models
,”
ASME J. Biomech. Eng.
,
137
(
9
), p.
094501
.
7.
Jaffer
,
I. H.
,
Fredenburgh
,
J. C.
,
Hirsh
,
J.
, and
Weitz
,
J. I.
,
2015
, “
Medical Device-Induced Thrombosis: What Causes It and How Can we Prevent It?
,”
J. Thromb. Haemostasis
,
13
(
S1
), pp.
S72
S81
.
8.
Uriel
,
N.
,
Sayer
,
G.
,
Addetia
,
K.
,
Fedson
,
S.
,
Kim
,
G. H.
,
Rodgers
,
D.
,
Kruse
,
E.
,
Collins
,
K.
,
Adatya
,
S.
,
Sarswat
,
N.
,
Jorde
,
U. P.
,
Juricek
,
C.
,
Ota
,
T.
,
Jeevanandam
,
V.
,
Burkhoff
,
D.
, and
Lang
,
R. M.
,
2016
, “
Hemodynamic Ramp Tests in Patients With Left Ventricular Assist Devices
,”
JACC: Heart Failure
,
4
(
3
), pp.
208
217
.
9.
Banerjee
,
R. K.
,
Peelukhana
,
S. V.
, and
Goswami
,
I.
,
2014
, “
Influence of Newly Designed Monorail Pressure Sensor Catheter on Coronary Diagnostic Parameters: An In Vitro Study
,”
J. Biomech.
,
47
(
3
), pp.
617
624
.
10.
Bateman
,
M. G.
,
Iles
,
T. L.
, and
Iaizzo
,
P. A.
,
2019
, “
Chapter 5 - Advancing the Design and Testing of Novel Cardiac Device Technologies Using the Visible Heart
,”
Engineering in Medicine
,
P. A.
Iaizzo
,
ed.
,
Academic Press
,
Cambridge, MA
, pp.
119
152
.
11.
D'Souza
,
G. A.
,
Peelukhana
,
S. V.
, and
Banerjee
,
R. K.
,
2014
, “
Diagnostic Uncertainties During Assessment of Serial Coronary Stenoses: An In Vitro Study
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
0210261
.
12.
Hariharan
,
P.
,
D'Souza
,
G. A.
,
Horner
,
M.
,
Morrison
,
T. M.
,
Malinauskas
,
R. A.
, and
Myers
,
M. R.
,
2017
, “
Use of the FDA Nozzle Model to Illustrate Validation Techniques in Computational Fluid Dynamics (CFD) Simulations
,”
PLoS One
,
12
(
6
), p.
e0178749
.
13.
Chia
,
H. N.
, and
Wu
,
B. M.
,
2015
, “
Recent Advances in 3D Printing of Biomaterials
,”
J. Biol. Eng.
,
9
(
1
), p.
4
.
14.
Giannopoulos
,
A. A.
,
Mitsouras
,
D.
,
Yoo
,
S.-J.
,
Liu
,
P. P.
,
Chatzizisis
,
Y. S.
, and
Rybicki
,
F. J.
,
2016
, “
Applications of 3D Printing in Cardiovascular Diseases
,”
Nat. Rev. Cardiol.
,
13
(
12
), p.
701
.
15.
Kurenov
,
S. N.
,
Ionita
,
C.
,
Sammons
,
D.
, and
Demmy
,
T. L.
,
2015
, “
Three-Dimensional Printing to Facilitate Anatomic Study, Device Development, Simulation, and Planning in Thoracic Surgery
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
4
), pp.
973
979.
16.
Riggs
,
K. W.
,
Dsouza
,
G.
,
Broderick
,
J. T.
,
Moore
,
R. A.
, and
Morales
,
D. L. S.
,
2018
, “
3D-Printed Models Optimize Preoperative Planning for Pediatric Cardiac Tumor Debulking
,”
Translational Pediatrics
,
7
(
3
), pp.
196
202
.
17.
Diep
,
P.
,
Pannem
,
S.
,
Sweer
,
J.
,
Lo
,
J.
,
Snyder
,
M.
,
Stueber
,
G.
,
Zhao
,
Y.
,
Tabassum
,
S.
,
Istfan
,
R.
,
Wu
,
J.
,
Erramilli
,
S.
, and
Roblyer
,
D.
,
2015
, “
Three-Dimensional Printed Optical Phantoms With Customized Absorption and Scattering Properties
,”
Biomed. Opt. Express
,
6
(
11
), pp.
4212
4220
.
18.
Geoghegan
,
P. H.
,
Buchmann
,
N. A.
,
Spence
,
C. J. T.
,
Moore
,
S.
, and
Jermy
,
M.
,
2012
, “
Fabrication of Rigid and Flexible Refractive-Index-Matched Flow Phantoms for Flow Visualisation and Optical Flow Measurements
,”
Exp. Fluids
,
52
(
5
), pp.
1331
1347
.
19.
Mitsouras
,
D.
, and
Liacouras
,
P. C.
,
2017
, “
3D Printing Technologies
,”
3D Printing in Medicine: A Practical Guide for Medical Professionals
,
F. J.
Rybicki
, and
G. T.
Grant, eds.
,
Springer International Publishing
,
Cham, Switzerland
, pp.
5
22
.
20.
Wang
,
J.
,
Coburn
,
J.
,
Liang
,
C.-P.
,
Woolsey
,
N.
,
Ramella-Roman
,
J. C.
,
Chen
,
Y.
, and
Pfefer
,
T. J.
,
2014
, “
Three-Dimensional Printing of Tissue Phantoms for Biophotonic Imaging
,”
Opt. Lett.
,
39
(
10
), pp.
3010
3013
.
21.
Ionita
,
C. N.
,
Mokin
,
M.
,
Varble
,
N.
,
Bednarek
,
D. R.
,
Xiang
,
J.
,
Snyder
,
K. V.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
,
Meng
,
H.
, and
Rudin
,
S.
,
2014
, “
Challenges and Limitations of Patient-Specific Vascular Phantom Fabrication Using 3D Polyjet Printing
,”
Proc. SPIE Int. Soc. Opt. Eng.
,
9038
, p.
90380m
.
22.
Franch
,
R. H.
, and
B. Gay
,
B.
,
1963
, “
Congenital Stenosis of the Pulmonary Artery Branches: A Classification, With Postmortem Findings in Two Cases
,”
Am. J. Med.
,
35
(
4
), pp.
512
529
.
23.
Schiavazzi
,
D. E.
,
Kung
,
E. O.
,
Marsden
,
A. L.
,
Baker
,
C.
,
Pennati
,
G.
,
Hsia
,
T. Y.
,
Hlavacek
,
A.
, and
Dorfman
,
A. L.
,
2015
, “
Hemodynamic Effects of Left Pulmonary Artery Stenosis After Superior Cavopulmonary Connection: A Patient-Specific Multiscale Modeling Study
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
3
), pp.
689
696
.
24.
Brewington
,
A. J.
,
1996
, “
15—Instrumentation
,”
Rules of Thumb for Mechanical Engineers
,
J. E.
Pope
,
ed.
,
Gulf Professional Publishing
,
Burlington, NJ
, pp.
352
371
.
25.
D'Souza
,
G. A.
,
Banerjee
,
R. K.
, and
Taylor
,
M. D.
,
2018
, “
Evaluation of Pulmonary Artery Stenosis in Congenital Heart Disease Patients Using Functional Diagnostic Parameters: An In Vitro Study
,”
J. Biomech.
,
81
, pp.
58
67
.
26.
Banerjee
,
R. K.
,
Ashtekar
,
K. D.
,
Helmy
,
T. A.
,
Effat
,
M. A.
,
Back
,
L. H.
, and
Khoury
,
S. F.
,
2008
, “
Hemodynamic Diagnostics of Epicardial Coronary Stenoses: In-Vitro Experimental and Computational Study
,”
Biomed. Eng. Online
,
7
(
24
), pp.
7
24
.
27.
Peelukhana
,
S. V.
,
Back
,
L. H.
, and
Banerjee
,
R. K.
,
2009
, “
Influence of Coronary Collateral Flow on Coronary Diagnostic Parameters: An In Vitro Study
,”
J. Biomech.
,
42
(
16
), pp.
2753
2759
.
28.
Shafter
,
H. A.
, and
Bliss
,
H. A.
,
1959
, “
Pulmonary Artery Stenosis
,”
Am. J. Med.
,
26
(
4
), pp.
517
526
.
29.
Idelchik
,
I. E.
,
2005
,
Handbook of Hydraulic Resistance
,
Jaico Publishing House
,
Mumbai, India
.
30.
Young
,
D. F.
, and
Tsai
,
F. Y.
,
1973
, “
Flow Characteristics in Models of Arterial Stenoses—I: Steady Flow
,”
J. Biomech.
,
6
(
4
), pp.
395
410
.
31.
Young
,
D. F.
, and
Tsai
,
F. Y.
,
1973
, “
Flow Characteristics in Models of Arterial Stenoses—II: Unsteady Flow
,”
J. Biomech.
,
6
(
5
), pp.
547
559
.
32.
Chern
,
M.-J.
,
Wu
,
M.-T.
, and
Her
,
S.-W.
,
2012
, “
Numerical Study for Blood Flow in Pulmonary Arteries After Repair of Tetralogy of Fallot
,”
Comput. Math. Methods Med.
,
2012
, pp.
1
18
.
33.
Banerjee
,
R. K.
,
Sinha Roy
,
A.
,
Back
,
L. H.
,
Back
,
M. R.
,
Khoury
,
S. F.
, and
Millard
,
R. W.
,
2007
, “
Characterizing Momentum Change and Viscous Loss of a Hemodynamic Endpoint in Assessment of Coronary Lesions
,”
J. Biomech.
,
40
(
3
), pp.
652
662
.
34.
Pijls
,
N. H.
,
van Son
,
J. A.
,
Kirkeeide
,
R. L.
,
De Bruyne
,
B.
, and
Gould
,
K. L.
,
1993
, “
Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity Before and After Percutaneous Transluminal Coronary Angioplasty
,”
Circulation
,
87
(
4
), pp.
1354
1367
.
35.
Gould
,
K. L.
,
Lipscomb
,
K.
, and
Hamilton
,
G. W.
,
1974
, “
Physiologic Basis for Assessing Critical Coronary Stenosis. Instantaneous Flow Response and Regional Distribution During Coronary Hyperemia as Measures of Coronary Flow Reserve
,”
Am. J. Cardiol.
,
33
(
1
), pp.
87
94
.
36.
Bradley
,
A. J.
, and
Alpert
,
J. S.
,
1991
, “
Coronary Flow Reserve
,”
Am. Heart J.
,
122
(
4 Pt. 1
), pp.
1116
1128
.
37.
Lee
,
N.
,
Taylor
,
M. D.
, and
Banerjee
,
R. K.
,
2015
, “
Right Ventricle-Pulmonary Circulation Dysfunction: A Review of Energy-Based Approach
,”
Biomed. Eng. Online
,
14
(
1
), pp.
S1
S8
.
38.
Pekkan
,
K.
,
Kitajima
,
H. D.
,
de Zelicourt
,
D.
,
Forbess
,
J. M.
,
Parks
,
W. J.
,
Fogel
,
M. A.
,
Sharma
,
S.
,
Kanter
,
K. R.
,
Frakes
,
D.
, and
Yoganathan
,
A. P.
,
2005
, “
Total Cavopulmonary Connection Flow With Functional Left Pulmonary Artery Stenosis: Angioplasty and Fenestration In Vitro
,”
Circulation
,
112
(
21
), pp.
3264
3271
.
39.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
40.
de Zélicourt
,
D. A.
,
Pekkan
,
K.
,
Wills
,
L.
,
Kanter
,
K.
,
Forbess
,
J.
,
Sharma
,
S.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
,
2005
, “
In Vitro Flow Analysis of a Patient-Specific Intraatrial Total Cavopulmonary Connection
,”
Ann. Thorac. Surg.
,
79
(
6
), pp.
2094
2102
.
41.
Pekkan
,
K.
,
Zélicourt
,
D. D.
,
Ge
,
L.
,
Sotiropoulos
,
F.
,
Frakes
,
D.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2005
, “
Physics-Driven CFD Modeling of Complex Anatomical Cardiovascular Flows—A TCPC Case Study
,”
Ann. Biomed. Eng.
,
33
(
3
), pp.
284
300
.
You do not currently have access to this content.