Bioprinting is a technique of creating 3D cell-laden structures by accurately dispensing biomaterial to form complex synthetic tissue. The printed constructs aim to mimic the native tissue by preserving the cell functionality and viability within the printed structure. The 3D bioprinting system presented in this paper aims to facilitate the process of 3D bioprinting through its ability to control the environmental parameters within an enclosed printing chamber. This design of the bioprinter targets to eliminate the need for a laminar flow hood, by regulating the necessary environmental conditions important for cell survival, especially during long duration prints. A syringe-based extrusion (SBE) deposition method comprising multiple nozzles is integrated into the system. This allows for a wider selection of biomaterials that can be used for the formation of the extracellular matrix (ECM). Tissue constructs composed of alginate-gelatin hydrogels were mixed with fibrinogen and human endothelial cells which were then characterized and compared using two methodologies: casted and bioprinted. Furthermore, vasculature was incorporated in the bioprinted constructs using sacrificial printing. Structural and functional characterization of the constructs were performed by assessing rheological, mechanical properties, and analyzing live-dead assay measurements.

References

References
1.
Bishop
,
E. S.
,
Mostafa
,
S.
,
Pakvasa
,
M.
,
Luu
,
H. H.
,
Lee
,
M. J.
,
Wolf
,
J. M.
,
Ameer
,
G. A.
,
He
,
T. C.
, and
Reid
,
R. R.
,
2017
, “
3-D Bioprinting Technologies in Tissue Engineering and Regenerative Medicine: Current and Future Trends
,”
Gen. Dis.
,
4
(
4
), pp.
185
195
.
2.
Derakhshanfar
,
S.
,
Mbeleck
,
R.
,
Xu
,
K.
,
Zhang
,
X.
,
Zhong
,
W.
, and
Xing
,
M.
,
2018
, “
3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances
,”
Bioactive. Mater.
,
3
(
2
), pp.
144
156
.
3.
Zhang
,
Y. S.
,
Yue
,
K.
,
Aleman
,
J.
,
Moghaddam
,
K. M.
,
Bakht
,
S. M.
,
Yang
,
J.
,
Jia
,
W.
,
Dell'Erba
,
V.
,
Assawes
,
P.
,
Shin
,
S. R.
,
Dokmeci
,
M. R.
,
Oklu
,
R.
, and
Khademhosseini
,
A.
,
2017
, “
3D Bioprinting for Tissue and Organ Fabrication
,”
Ann. Biomed Eng.
,
45
(
1
), pp.
148
163
.
4.
U.S Government Information on Organ Donation and Transplantation
,
2019
, “
Organ Donation Statistics
,” United States Department of Health and Human Services, accessed June 14, 2019, https://www.organdonor.gov/statistics-stories/statistics.html
5.
Gu
,
B. K.
,
Choi
,
D. J.
,
Park
,
S. J.
,
Kim
,
Y. J.
, and
Kim
,
C. H.
,
2018
, “
3D Bioprinting Technologies for Tissue Engineering Applications
,”
Cutting-Edge Enabling Tech for Regenerative Medicine
,
Springer
,
Singapore
, pp.
15
28
.
6.
Mandrycky
,
C.
,
Wang
,
Z.
,
Kim
,
K.
, and
Kim
,
D. H.
,
2016
, “
3D Bioprinting for Engineering Complex Tissues
,”
Biotec. Adv.
,
34
(
4
), pp.
422
434
.
7.
Sodupe-Ortega
,
E.
,
Sanz-Garcia
,
A.
,
Pernia-Espinoza
,
A.
, and
Escobedo-Lucea
,
C.
,
2018
, “
Accurate Calibration in Multi-Material 3D Bioprinting for Tissue Engineering
,”
Materials
,
11
(
8
), p.
1402
.
8.
Knowlton
,
S.
,
Onal
,
S.
,
Yu
,
C. H.
,
Zhao
,
J. J.
, and
Tasoglu
,
S.
,
2015
, “
Bioprinting for Cancer Research
,”
Tre. Biotech.
,
33
(
9
), pp.
504
513
.
9.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotech.
,
32
(
8
), p.
773
.
10.
Li
,
J.
,
Chen
,
M.
,
Fan
,
X.
, and
Zhou
,
H.
,
2016
, “
Recent Advances in Bioprinting Techniques: Approaches, Applications and Future Prospects
,”
J. Trans. Med.
,
14
(
1
), pp.
2
15
.https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-016-1028-0
11.
Lee
,
K. Y.
, and
Mooney
,
D. J.
,
2012
, “
Alginate: Properties and Biomedical Applications
,”
Prog. Poly. Sci.
,
37
(
1
), pp.
106
126
.
12.
You
,
F.
,
Eames
,
B. F.
, and
Chen
,
X.
,
2017
, “
Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering
,”
Int. J. Mol. Sci.
,
18
(
7
), pp.
2
26
.https://www.mdpi.com/1422-0067/18/7/1597
13.
Schuurman
,
W.
,
Levett
,
P. A.
,
Pot
,
M. W.
,
van Weeren
,
P. R.
,
Dhert
,
W. J.
,
Hutmacher
,
D. W.
,
Melchels
,
F. P.
,
Klein
,
T. J.
, and
Malda
,
J.
,
2013
, “
Gelatin‐Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue‐Engineered Cartilage Constructs
,”
Macro. Biosci.
,
13
(
5
), pp.
551
561
.
14.
Ruel-Gariepy
,
E.
, and
Leroux
,
J. C.
,
2004
, “
In Situ-Forming Hydrogels—Review of Temperature-Sensitive Systems
,”
Eur. J. Pharma. Biopharm.
,
58
(
2
), pp.
409
426
.
15.
Ahmed
,
E. M.
,
2015
, “
Hydrogel: Preparation, Characterization, and Applications: A Review
,”
J. Adv. Res.
,
6
(
2
), pp.
105
121
.
16.
Gasperini
,
L.
,
Mano
,
J. F.
, and
Reis
,
R. L.
,
2014
, “
Natural Polymers for the Microencapsulation of Cells
,”
J. R. Soc. Interface.
,
11
(
100
), pp.
2
19
.https://royalsocietypublishing.org/doi/full/10.1098/rsif.2014.0817
17.
Rehm
,
B. H.
,
2009
, “
Alginate Production: Precursor Biosynthesis, Polymerization and Secretion
,” Alginates:
Biology and Applications
,
Springer
,
Berlin
, pp.
55
71
.
18.
Di Giuseppe
,
M.
,
Law
,
N.
,
Webb
,
B.
,
Macrae
,
R. A.
,
Liew
,
L. J.
,
Sercombe
,
T. B.
,
Dilley
,
R. J.
, and
Doyle
,
B. J.
,
2018
, “
Mechanical Behaviour of Alginate-Gelatin Hydrogels for 3D Bioprinting
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
150
157
.
19.
Nakamura
,
M.
,
Iwanaga
,
S.
,
Henmi
,
C.
,
Arai
,
K.
, and
Nishiyama
,
Y.
,
2010
, “
Biomatrices and Biomaterials for Future Developments of Bioprinting and Biofabrication
,”
Biofabrication
,
2
(
1
), pp.
1
8
.https://iopscience.iop.org/article/10.1088/1758-5082/2/1/014110/pdf
20.
Schultz
,
G. S.
, and
Wysocki
,
A.
,
2009
, “
Interactions Between Extracellular Matrix and Growth Factors in Wound Healing
,”
Woun. Rep. Regen.
,
17
(
2
), pp.
153
162
.
21.
Kleinman
,
H. K.
,
Philp
,
D.
, and
Hoffman
,
M. P.
,
2003
, “
Role of the Extracellular Matrix in Morphogenesis
,”
Curr. Opio. Biotech.
,
14
(
5
), pp.
526
532
.
22.
Jockenhoevel
,
S.
,
Zund
,
G.
,
Hoerstrup
,
S. P.
,
Chalabi
,
K.
,
Sachweh
,
J. S.
,
Demircan
,
L.
,
Messmer
,
B. J.
, and
Turina
,
M.
,
2001
, “
Fibrin Gel–Advantages of a New Scaffold in Cardiovascular Tissue Engineering
,”
Eu. J. Cardio-Thorac. Surg.
,
19
(
4
), pp.
424
430
.
23.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Gladman
,
A. S.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell‐Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.
24.
Xu
,
M.
,
Wang
,
X.
,
Yan
,
Y.
,
Yao
,
R.
, and
Ge
,
Y.
,
2010
, “
An Cell-Assembly Derived Physiological 3D Model of the Metabolic Syndrome, Based on Adipose-Derived Stromal Cells and a Gelatin/Alginate/Fibrinogen Matrix
,”
Biomaterials
,
31
(
14
), pp.
3868
3877
.
25.
Kharel
,
P.
,
Mahmoud
,
R.
, and
Mitra
,
K.
,
2018
, “
Rheological Analysis of Cell Embedded Hydrogel Bioink for Extrusion Bioprinting
,”
Third Thermal and Fluids Engineering Conference (TFEC), Fort Lauderdale, FL
, Paper No. TFEC-2018-21751.
26.
Hölzl
,
K.
,
Lin
,
S.
,
Tytgat
,
L.
,
Van Vlierberghe
,
S.
,
Gu
,
L.
, and
Ovsianikov
,
A.
,
2016
, “
Bioink Properties Before, During and After 3D Bioprinting
,”
Biofabrication
,
8
(
3
), pp.
2
20
.https://iopscience.iop.org/article/10.1088/1758-5090/8/3/032002/meta
27.
Novosel
,
E. C.
,
Kleinhans
,
C.
, and
Kluger
,
P. J.
,
2011
, “
Vascularization Is the Key Challenge in Tissue Engineering
,”
Adv. Drug. Deliv. Rev.
,
63
(
4–5
), pp.
300
311
.
28.
Jia
,
W.
,
Gungor-Ozkerim
,
P. S.
,
Zhang
,
Y. S.
,
Yue
,
K.
,
Zhu
,
K.
,
Liu
,
W.
,
Pi
,
Q.
,
Byambaa
,
B.
,
Dokmeci
,
M. R.
,
Shin
,
S. R.
, and
Khademhosseini
,
A.
,
2016
, “
Direct 3D Bioprinting of Perfusable Vascular Constructs Using a Blend Bioink
,”
Biomaterials
,
106
, pp.
58
68
.
29.
Gross
,
B. C.
,
Erkal
,
J. L.
,
Lockwood
,
S. Y.
,
Chen
,
C.
, and
Spence
,
D. M.
,
2014
, “
Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences
,”
Anal. Chem.
,
86
(
7
), pp.
3240
3253
.
30.
Kang
,
H. W.
,
Lee
,
S. J.
,
Ko
,
I. K.
,
Kengla
,
C.
,
Yoo
,
J. J.
, and
Atala
,
A.
,
2016
, “
A 3D Bioprinting System to Produce Human-Scale Tissue Constructs With Structural Integrity
,”
Nat. Biotech.
,
34
(
3
), pp.
1
11
.https://www.nature.com/articles/nbt.3413
31.
Bertassoni
,
L. E.
,
Cecconi
,
M.
,
Manoharan
,
V.
,
Nikkhah
,
M.
,
Hjortnaes
,
J.
,
Cristino
,
A. L.
,
Barabaschi
,
G.
,
Demarchi
,
D.
,
Dokmeci
,
M. R.
,
Yang
,
Y.
, and
Khademhosseini
,
A.
,
2014
, “
Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs
,”
Lab a Chip
,
14
(
13
), pp.
2202
2211
.
32.
Gergely
,
R. C.
,
Pety
,
S. J.
,
Krull
,
B. P.
,
Patrick
,
J. F.
,
Doan
,
T. Q.
,
Coppola
,
A. M.
,
Thakre
,
P. R.
,
Sottos
,
N. R.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2015
, “
Multidimensional Vascularized Polymers Using Degradable Sacrificial Templates
,”
Adv. Func. Mater.
,
25
(
7
), pp.
1043
1052
.
33.
O'Bryan
,
C. S.
,
Bhattacharjee
,
T.
,
Niemi
,
S. R.
,
Balachandar
,
S.
,
Baldwin
,
N.
,
Ellison
,
S. T.
,
Taylor
,
C. R.
,
Sawyer
,
W. G.
, and
Angelini
,
T. E.
,
2017
, “
Three-Dimensional Printing With Sacrificial Materials for Soft Matter Manufacturing
,”
MRS Bull.
,
42
(
8
), pp.
571
577
.
34.
Lewis
,
J. A.
,
Kolesky
,
D. B.
,
Skylar-Scott
,
M. A.
,
Homan
,
K. A.
,
Truby
,
R. L.
, and
Gladman
,
A. S.
, Harvard College,
2018
, “
Method of Printing a Tissue Construct With Embedded Vasculature
,” U.S. Patent No. 10/117,968.
35.
Müller
,
M.
,
Becher
,
J.
,
Schnabelrauch
,
M.
, and
Zenobi-Wong
,
M.
,
2013
, “
Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-Component Hydrogels for 3D Cell Culture
,”
JoVE
,
77
, pp.
1
9
.https://www.jove.com/video/50632/printing-thermoresponsive-reverse-molds-for-creation-patterned-two
36.
Gioffredi
,
E.
,
Boffito
,
M.
,
Calzone
,
S.
,
Giannitelli
,
S. M.
,
Rainer
,
A.
,
Trombetta
,
M.
,
Mozetic
,
P.
, and
Chiono
,
V.
,
2016
, “
Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications
,”
Procedia. CIRP
,
49
, pp.
125
132
.
37.
Cui
,
H.
,
Nowicki
,
M.
,
Fisher
,
J. P.
, and
Zhang
,
L. G.
,
2017
, “
3D Bioprinting for Organ Regeneration
,”
Adv. Health. Mater.
,
6
(
1
), pp.
2
29
.https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.201601118
38.
Suntornnond
,
R.
,
Tan
,
E. Y. S.
,
An
,
J.
, and
Chua
,
C. K.
,
2017
, “
A Highly Printable and Biocompatible Hydrogel Composite for Direct Printing of Soft and Perfusable Vasculature-Like Structures
,”
Sci. Rep.
,
7
(
1
), p.
16902
.https://www.nature.com/articles/s41598-017-17198-0
39.
Bercea
,
M.
,
Darie
,
R. N.
,
Niţa˘
,
L. E.
, and
Morariu
,
S.
,
2011
, “
Temperature Responsive Gels Based on Pluronic F127 and Poly (Vinyl Alcohol)
,”
Ind. Eng. Chem. Res.
,
50
(
7
), pp.
4199
4206
.
40.
Sarker
,
B.
,
Singh
,
R.
,
Silva
,
R.
,
Roether
,
J. A.
,
Kaschta
,
J.
,
Detsch
,
R.
,
Schubert
,
D. W.
,
Cicha
,
I.
, and
Boccaccini
,
A. R.
,
2014
, “
Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel
,”
PLoS One
,
9
(
9
), pp.
1
12
.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107952
41.
Sherman
,
C. C.
,
1994
, “
More Solutions to Sticky Problems. Brookfield Viscometer Guide
,”
Brookfield Engineering Laboratories
,
Stoughton, Boston, MA
, pp.
1
7
.
42.
Beckman
,
J. A.
,
Thakore
,
A.
,
Kalinowski
,
B. H.
,
Harris
,
J. R.
, and
Creager
,
M. A.
,
2001
, “
Radiation Therapy Impairs Endothelium-Dependent Vasodilation in Humans
,”
J. Ameri. Col. Cardi.
,
37
(
3
), pp.
761
765
.
You do not currently have access to this content.