Cerebral aneurysm clips are biomedical implants applied by neurosurgeons to re-approximate arterial vessel walls and prevent catastrophic aneurysmal hemorrhages in patients. Current methods of aneurysm clip production are labor intensive and time-consuming, leading to high costs per implant and limited variability in clip morphology. Metal additive manufacturing is investigated as an alternative to traditional manufacturing methods that may enable production of patient-specific aneurysm clips to account for variations in individual vascular anatomy and possibly reduce surgical complication risks. Relevant challenges to metal additive manufacturing are investigated for biomedical implants, including material choice, design limitations, postprocessing, printed material properties, and combined production methods. Initial experiments with additive manufacturing of 316 L stainless steel aneurysm clips are carried out on a selective laser melting (SLM) system. The dimensions of the printed clips were found to be within 0.5% of the dimensions of the designed clips. Hardness and density of the printed clips (213 ± 7 HV1 and 7.9 g/cc, respectively) were very close to reported values for 316 L stainless steel, as expected. No ferrite and minimal porosity is observed in a cross section of a printed clip, with some anisotropy in the grain orientation. A clamping force of approximately 1 N is measured with a clip separation of 1.5 mm. Metal additive manufacturing shows promise for use in the creation of custom aneurysm clips, but some of the challenges discussed will need to be addressed before clinical use is possible.

References

References
1.
Miller
,
T. S.
,
Altschul
,
D.
,
Baxi
,
N.
,
Farinhas
,
J.
,
Pasquale
,
D.
,
Burns
,
J.
,
Gordon
,
D.
,
Bello
,
J.
,
Brook
,
A.
, and
Flamm
,
E.
,
2017
, “
Comparison of the Prevalence of Ruptured and Unruptured Cerebral Aneurysms in a Poor Urban Minority Population
,”
J. Stroke Cerebrovasc. Dis.
,
26
(
10
), pp.
2287
2293
.
2.
Feigin
,
V. L.
,
Rinkel
,
G. J. E.
,
Lawes
,
C. M. M.
,
Algra
,
A.
,
Bennett
,
D. A.
,
Van Gijn
,
J.
, and
Anderson
,
C. S.
,
2005
, “
Risk Factors for Subarachnoid Hemorrhage: An Updated Systematic Review of Epidemiological Studies
,”
Stroke
,
36
(
12
), pp.
2773
2780
.
3.
D'Souza
,
S.
,
2015
, “
Aneurysmal Subarachnoid Hemorrhage
,”
J. Neurosurg. Anesthesiol.
,
27
(
3
), pp.
222
240
.
4.
Ljunggren
,
B.
,
Saveland
,
H.
,
Brandt
,
L.
,
Kagstrom
,
E.
,
Rehncrona
,
S.
, and
Nilsson
,
P.-E.
,
1983
, “
Temporary Clipping During Early Operation for Ruptured Aneurysm: Preliminary Report
,”
Neurosurgery
,
12
(
5
), pp.
525
530
.
5.
Ooka
,
K.
,
Shibuya
,
M.
, and
Suzuki
,
Y.
,
1997
, “
A Comparative Study of Intracranial Aneurysm Clips: Closing and Opening Forces and Physical Endurance
,”
Neurosurgery
,
40
(
2
), pp.
318
323
.
6.
Horiuchi
,
T.
,
Hongo
,
K.
, and
Shibuya
,
M.
,
2012
, “
Scissoring of Cerebral Aneurysm Clips: Mechanical Endurance of Clip Twisting
,”
Neurosurg. Rev.
,
35
(
2
), pp.
219
224
.
7.
Sugita
,
K.
,
Kobayashi
,
S.
,
Kyoshima
,
K.
, and
Nakagawa
,
F.
,
1982
, “
Fenestrated Clips for Unusual Aneurysms of the Carotid Artery
,”
J. Neurosurg.
,
57
(
2
), pp.
240
246
.
8.
Aesculap
,
2017
, “
Yasargil Aneurysm Clip System
,” Aesculap AG, Tuttlingen, Germany, accessed Jan. 13, 2019, https://www.bbraun.com.au/en/products/b/yasargil-aneurysmclipsystem. html
9.
Chen
,
W.
,
Xing
,
W.
,
Peng
,
Y.
,
He
,
Z.
,
Wang
,
C.
, and
Wang
,
Q.
,
2016
, “
Diagnosis and Treatment of Intracranial Aneurysms With 320-Detector Row Volumetric Computed Tomography Angiography
,”
World Neurosurg.
,
91
, pp.
347
356
.
10.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2016
, “
Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthop. Res.
,
34
(
3
), pp.
369
385
.
11.
Pucci
,
J. U.
,
Christophe
,
B. R.
,
Sisti
,
J. A.
, and
Connolly
,
E. S.
,
2017
, “
Three-Dimensional Printing: Technologies, Applications, and Limitations in Neurosurgery
,”
Biotechnol. Adv.
,
35
(
5
), pp.
521
529
.
12.
Nagatani
,
T.
,
Shibuya
,
M.
,
Ooka
,
K.
,
Suzuki
,
Y.
,
Takayasu
,
M.
, and
Yoshida
,
J.
,
1998
, “
Titanium Aneurysm Clips: Mechanical Trial Characteristics and Clinical Trial
,”
Neurol. Med. Chir.
,
38
, pp.
39
44
.
13.
McFadden
,
J. T.
,
2012
, “
Magnetic Resonance Imaging and Aneurysm Clips
,”
J. Neurosurg.
,
117
(
1
), pp.
1
11
.
14.
Song
,
B.
,
Zhao
,
X.
,
Li
,
S.
,
Han
,
C.
,
Wei
,
Q.
,
Wen
,
S.
,
Liu
,
J.
, and
Shi
,
Y.
,
2015
, “
Differences in Microstructure and Properties Between Selective Laser Melting and Traditional Manufacturing for Fabrication of Metal Parts: A Review
,”
Front. Mech. Eng.
,
10
(
2
), pp.
111
125
.
15.
Tabor
,
D.
,
1970
, “
The Hardness of Solids
,”
Rev. Phys. Technol.
,
1
(
3
), pp.
145
179
.
16.
Song
,
M.
,
Wang
,
M.
,
Lou
,
X.
,
Rebak
,
R. B.
, and
Was
,
G. S.
,
2019
, “
Radiation Damage and Irradiation-Assisted Stress Corrosion Cracking of Additively Manufactured 316 L Stainless Steels
,”
J. Nucl. Mater.
,
513
, pp.
33
44
.
17.
Sun
,
Z.
,
Tan
,
X.
,
Tor
,
S. B.
, and
Chua
,
C. K.
,
2018
, “
Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316 L by Selective Laser Melting
,”
NPG Asia Mater.
,
10
(
4
), pp.
127
136
.
18.
Wang
,
X.
,
Muñiz-Lerma
,
J. A.
,
Sanchez-Mata
,
O.
,
Attarian Shandiz
,
M.
,
Brodusch
,
N.
,
Gauvin
,
R.
, and
Brochu
,
M.
,
2019
, “
Characterization of Single Crystalline Austenitic Stainless Steel Thin Struts Processed by Laser Powder Bed Fusion
,”
Scr. Mater.
,
163
, pp.
51
56
.
19.
Andreau
,
O.
,
Koutiri
,
I.
,
Peyre
,
P.
,
Penot
,
J. D.
,
Saintier
,
N.
,
Pessard
,
E.
,
De Terris
,
T.
,
Dupuy
,
C.
, and
Baudin
,
T.
,
2019
, “
Texture Control of 316 L Parts by Modulation of the Melt Pool Morphology in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
264
, pp.
21
31
.
20.
Mower
,
T. M.
, and
Long
,
M. J.
,
2016
, “
Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials
,”
Mater. Sci. Eng. A
,
651
, pp.
198
213
.
21.
Xu
,
W.
,
Lui
,
E. W.
,
Pateras
,
A.
,
Qian
,
M.
, and
Brandt
,
M.
,
2017
, “
In Situ Tailoring Microstructure in Additively Manufactured Ti-6Al-4V for Superior Mechanical Performance
,”
Acta Mater.
,
125
, pp.
390
400
.
22.
Zinovieva
,
O.
,
Zinoviev
,
A.
, and
Ploshikhin
,
V.
,
2018
, “
Three-Dimensional Modeling of the Microstructure Evolution During Metal Additive Manufacturing
,”
Comput. Mater. Sci.
,
141
, pp.
207
220
.
23.
Tian
,
Y.
,
Gora
,
W. S.
,
Cabo
,
A. P.
,
Parimi
,
L. L.
,
Hand
,
D. P.
,
Tammas-Williams
,
S.
, and
Prangnell
,
P. B.
,
2018
, “
Material Interactions in Laser Polishing Powder Bed Additive Manufactured Ti6Al4V Components
,”
Addit. Manuf.
,
20
, pp.
11
22
.
24.
Tan
,
K. L.
, and
Yeo
,
S. H.
,
2017
, “
Surface Modification of Additive Manufactured Components by Ultrasonic Cavitation Abrasive Finishing
,”
Wear
,
378–379
, pp.
90
95
.
25.
Urlea
,
V.
, and
Brailovski
,
V.
,
2017
, “
Electropolishing and Electropolishing-Related Allowances for Powder Bed Selectively Laser-Melted Ti-6Al-4V Alloy Components
,”
J. Mater. Process. Technol.
,
242
, pp.
1
11
.
26.
Sidambe
,
A. T.
,
2014
, “
Biocompatibility of Advanced Manufactured Titanium Implants-A Review
,”
Materials (Basel)
,
7
(
12
), pp.
8168
8188
.
27.
Kong
,
D.
,
Ni
,
X.
,
Dong
,
C.
,
Lei
,
X.
,
Zhang
,
L.
,
Man
,
C.
,
Yao
,
J.
,
Cheng
,
X.
, and
Li
,
X.
,
2018
, “
Bio-Functional and Anti-Corrosive 3D Printing 316 L Stainless Steel Fabricated by Selective Laser Melting
,”
Mater. Des.
,
152
, pp.
88
101
.
28.
Yang
,
F.
,
Chen
,
C.
,
Zhou
,
Q.
,
Gong
,
Y.
,
Li
,
R.
,
Li
,
C.
,
Klämpfl
,
F.
,
Freund
,
S.
,
Wu
,
X.
,
Sun
,
Y.
,
Li
,
X.
,
Schmidt
,
M.
,
Ma
,
D.
, and
Yu
,
Y.
,
2017
, “
Laser Beam Melting 3D Printing of Ti6Al4V Based Porous Structured Dental Implants: Fabrication, Biocompatibility Analysis and Photoelastic Study
,”
Sci. Rep.
,
7
, pp.
1
12
.https://www.nature.com/articles/srep45360
29.
Tan
,
X. P.
,
Tan
,
Y. J.
,
Chow
,
C. S. L.
,
Tor
,
S. B.
, and
Yeong
,
W. Y.
,
2017
, “
Metallic Powder-Bed Based 3D Printing of Cellular Scaffolds for Orthopaedic Implants: A State-of-the-Art Review on Manufacturing, Topological Design, Mechanical Properties and Biocompatibility
,”
Mater. Sci. Eng. C
,
76
, pp.
1328
1343
.
30.
Nitta
,
I.
,
Tsukiyama
,
Y.
,
Nomura
,
S.
, and
Takatsu
,
N.
,
2016
, “
Frictional Characteristics of Clamp Surfaces of Aneurysm Clips Finished by Laser Processing
,”
J. Adv. Mech. Des. Syst. Manuf.
,
10
(
2
), pp.
1
12
.
You do not currently have access to this content.