Selective laser melting (SLM) can be used to tailor both the geometry and mechanical properties of lattice structures to match bone properties. In this work, a process–structure–property (PSP) relationship for Ti6AL4V porosity graded gyroids (PGGs) structures was developed. A design of experiment approach was used to test the significance and contribution of different process parameters on microstructure, morphology, and mechanical properties. Process maps to predict the morphology errors at specific laser power and scan speed were developed. Moreover, the mechanical properties of radially PGGs with a relative density of 25% are evaluated using different SLM process parameters. The results showed that PGGs with different radial gradation designs have mechanical properties that are compatible with bone implants: apparent compressive modulus of 1.4–5.3 GPa and compressive strength 40–154 MPa.

References

References
1.
Wang
,
X.
,
Xu
,
S.
,
Zhou
,
S.
,
Xu
,
W.
,
Leary
,
M.
,
Choong
,
P.
,
Qian
,
M.
,
Brandt
,
M.
, and
Xie
,
Y. M.
,
2016
, “
Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review
,”
Biomaterials
,
83
, pp.
127
141
.
2.
Ashby
,
M.
,
2013
, “
Designing Architectured Materials
,”
Scr. Mater.
,
68
(
1
), pp.
4
7
.
3.
Ashby
,
M. F.
,
2005
, “
The Properties of Foams and Lattices
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
15
30
.
4.
Wadley
,
H. N. G.
,
2005
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
31
68
.
5.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A
,
466
(
2121
), pp.
2495
2516
.
6.
Yu
,
B.
,
Abu Samk
,
K.
, and
Hibbard
,
G. D.
,
2015
, “
Optimizing the Compressive Strength of Strain-Hardenable Stretch-Formed Microtruss Architectures
,”
Metall. Mater. Trans. A
,
46
(
5
), pp.
1985
1994
.
7.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2016
, “
Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthop. Res.
,
34
(
3
), pp.
369
385
.
8.
Arabnejad
,
S.
,
Burnett Johnston
,
R.
,
Pura
,
J. A.
,
Singh
,
B.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2016
, “
High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints
,”
Acta Biomater.
,
30
, pp.
345
356
.
9.
Giannitelli
,
S. M.
,
Accoto
,
D.
,
Trombetta
,
M.
, and
Rainer
,
A.
,
2014
, “
Current Trends in the Design of Scaffolds for Computer-Aided Tissue Engineering
,”
Acta Biomater.
,
10
(
2
), pp.
580
594
.
10.
Montazerian
,
H.
,
Davoodi
,
E.
,
Asadi-eydivand
,
M.
,
Kadkhodapour
,
J.
, and
Solati-hashjin
,
M.
,
2017
, “
Porous Scaffold Internal Architecture Design Based on Minimal Surfaces: A Compromise Between Permeability and Elastic Properties
,”
Mater. Des.
,
126
, pp.
98
114
.
11.
Miao
,
X.
,
Sun
,
D.
,
Miao
,
X.
, and
Sun
,
D.
,
2009
, “
Graded/Gradient Porous Biomaterials
,”
Materials (Basel)
,
3
(
1
), pp.
26
47
.
12.
Wang
,
L.
,
Kang
,
J.
,
Sun
,
C.
,
Li
,
D.
,
Cao
,
Y.
, and
Jin
,
Z.
,
2017
, “
Mapping Porous Microstructures to Yield Desired Mechanical Properties for Application in 3D Printed Bone Scaffolds and Orthopaedic Implants
,”
Mater. Des.
,
133
, pp.
62
68
.
13.
Onal
,
E.
,
Frith
,
J. E.
,
Jurg
,
M.
,
Wu
,
X.
, and
Molotnikov
,
A.
,
2018
, “
Mechanical Properties and In Vivo Behavior of Additively Manufactured and Functionally Graded Ti6Al4V Porous Scaffolds
,”
Metals (Basel
),
8
(
4
), pp.
200
221
.
14.
Fousová
,
M.
,
Vojtěch
,
D.
,
Kubásek
,
J.
,
Jablonská
,
E.
, and
Fojt
,
J.
,
2017
, “
Promising Characteristics of Gradient Porosity Ti-6Al-4V Alloy Prepared by SLM Process
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
368
376
.
15.
Ying
,
S.
,
Sun
,
C.
,
Fai
,
K.
, and
Wei
,
J.
,
2017
, “
Compressive Properties of Functionally Graded Lattice Structures Manufactured by Selective Laser Melting
,”
Mater. Des.
,
131
, pp.
112
120
.
16.
Al-Saedi
,
D. S. J.
,
Masood
,
S. H.
,
Faizan-Ur-Rab
,
M.
,
Alomarah
,
A.
, and
Ponnusamy
,
P.
,
2018
, “
Mechanical Properties and Energy Absorption Capability of Functionally Graded F2BCC Lattice Fabricated by SLM
,”
Mater. Des.
,
144
, pp.
32
44
.
17.
Zhang
,
X.-Y.
,
Fang
,
G.
,
Xing
,
L.-L.
,
Liu
,
W.
, and
Zhou
,
J.
,
2018
, “
Effect of Porosity Variation Strategy on the Performance of Functionally Graded Ti-6Al-4V Scaffolds for Bone Tissue Engineering
,”
Mater. Des.
,
157
, pp.
523
538
.
18.
Surmeneva
,
M. A.
,
Surmenev
,
R. A.
,
Chudinova
,
E. A.
,
Koptioug
,
A.
,
Tkachev
,
M. S.
,
Gorodzha
,
S. N.
, and
Rännar
,
L.
,
2017
, “
Fabrication of Multiple-Layered Gradient Cellular Metal Scaffold Via Electron Beam Melting for Segmental Bone Reconstruction
,”
Mater. Des.
,
133
, pp.
195
204
.
19.
Bobbert
,
F. S. L.
,
Lietaert
,
K.
,
Eftekhari
,
A. A.
,
Pouran
,
B.
,
Ahmadi
,
S. M.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2017
, “
Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological, Mechanical, and Mass Transport Properties
,”
Acta Biomater.
,
53
, pp.
572
584
.
20.
Han
,
C.
,
Li
,
Y.
,
Wang
,
Q.
,
Wen
,
S.
,
Wei
,
Q.
,
Yan
,
C.
,
Hao
,
L.
,
Liu
,
J.
, and
Shi
,
Y.
,
2018
, “
Continuous Functionally Graded Porous Titanium Scaffolds Manufactured by Selective Laser Melting for Bone Implants
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
119
127
.
21.
Liu
,
F.
,
Mao
,
Z.
,
Zhang
,
P.
,
Zhang
,
D. Z.
,
Jiang
,
J.
, and
Ma
,
Z.
,
2018
, “
Functionally Graded Porous Scaffolds in Multiple Patterns: New Design Method, Physical and Mechanical Properties
,”
Mater. Des.
,
160
, pp.
849
860
.
22.
Sing
,
S. L.
,
Yeong
,
W. Y.
,
Wiria
,
F. E.
, and
Tay
,
B. Y.
,
2016
, “
Characterization of Titanium Lattice Structures Fabricated by Selective Laser Melting Using an Adapted Compressive Test Method
,”
Exp. Mech.
,
56
(
5
), pp.
735
748
.
23.
Sing
,
S. L.
,
Wiria
,
F. E.
, and
Yeong
,
W. Y.
,
2018
, “
Selective Laser Melting of Lattice Structures: A Statistical Approach to Manufacturability and Mechanical Behavior
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
170
180
.
24.
Ghouse
,
S.
,
Babu
,
S.
,
Nai
,
K.
,
Hooper
,
P. A.
, and
Jeffers
,
J. R. T.
,
2018
, “
The Influence of Laser Parameters, Scanning Strategies and Material on the Fatigue Strength of a Stochastic Porous Structure
,”
Addit. Manuf.
,
22
, pp.
290
301
.
25.
Ahmadi
,
S. M.
,
Hedayati
,
R.
,
Ashok Kumar Jain
,
R. K.
,
Li
,
Y.
,
Leeflang
,
S.
, and
Zadpoor
,
A. A.
,
2017
, “
Effects of Laser Processing Parameters on the Mechanical Properties, Topology, and Microstructure of Additively Manufactured Porous Metallic Biomaterials: A Vector-Based Approach
,”
Mater. Des.
,
134
, pp.
234
243
.
26.
Khorasani
,
A. M.
,
Goldberg
,
M.
,
Doeven
,
E. H.
, and
Littlefair
,
G.
,
2015
, “
Titanium in Biomedical Applications—Properties and Fabrication: A Review
,”
J. Biomater. Tissue Eng.
,
5
(
8
), pp.
593
619
.
27.
Du Plessis
,
A.
,
Yadroitsava
,
I.
,
Yadroitsev
,
I.
,
le Roux
,
S.
, and
Blaine
,
D.
,
2018
, “
Numerical Comparison of Lattice Unit Cell Designs for Medical Implants by Additive Manufacturing
,”
Virtual Phys. Prototyping
,
13
(
4
), pp.
266
281
.
28.
Khaderi
,
S. N.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2014
, “
The Stiffness and Strength of the Gyroid Lattice
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
3866
3877
.
29.
Abueidda
,
D.
,
Elhebeary
,
M.
,
Shiang
,
C.-S.
,
Pang
,
S.
,
Abu Al-Rub
,
R.
, and
Jasiuk
,
I.
,
2019
, “
Mechanical Properties of 3D Printed Polymeric Gyroid Cellular Structures: Experimental and Finite Element Study
,”
Mater. Des.
,
165
, p.
107597
.
30.
Torres-Rendon
,
J. G.
,
Femmer
,
T.
,
De Laporte
,
L.
,
Tigges
,
T.
,
Rahimi
,
K.
,
Gremse
,
F.
,
Zafarnia
,
S.
,
Lederle
,
W.
,
Ifuku
,
S.
,
Wessling
,
M.
,
Hardy
,
J. G.
, and
Walther
,
A.
,
2015
, “
Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering
,”
Adv. Mater.
,
27
(
19
), pp.
2989
2995
.
31.
Mahmoud
,
D.
, and
Elbestawi
,
M. A.
,
2018
, “
Selective Laser Melting of Porosity Graded Lattice Structures for Bone Implants
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
1
13
.
32.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
5
(
1
), p.
2
.
33.
Scipioni Bertoli
,
U.
,
Wolfer
,
A. J.
,
Matthews
,
M. J.
,
Delplanque
,
J.-P. R.
, and
Schoenung
,
J. M.
,
2017
, “
On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting
,”
Mater. Des.
,
113
, pp.
331
340
.
34.
Shipley
,
H.
,
McDonnell
,
D.
,
Culleton
,
M.
,
Coull
,
R.
,
Lupoi
,
R.
,
O'Donnell
,
G.
, and
Trimble
,
D.
,
2018
, “
Optimisation of Process Parameters to Address Fundamental Challenges During Selective Laser Melting of Ti-6Al-4V: A Review
,”
Int. J. Mach. Tools Manuf.
,
128
, pp.
1
20
.
35.
Cherry
,
J. A.
,
Davies
,
H. M.
,
Mehmood
,
S.
,
Lavery
,
N. P.
,
Brown
,
S. G. R.
, and
Sienz
,
J.
,
2015
, “
Investigation Into the Effect of Process Parameters on Microstructural and Physical Properties of 316 L Stainless Steel Parts by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
869
879
.
36.
Calignano
,
F.
,
Lorusso
,
M.
,
Pakkanen
,
J.
,
Trevisan
,
F.
,
Ambrosio
,
E. P.
,
Manfredi
,
D.
, and
Fino
,
P.
,
2017
, “
Investigation of Accuracy and Dimensional Limits of Part Produced in Aluminum Alloy by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1–4
), pp.
451
458
.
37.
Van Hooreweder
,
B.
, and
Kruth
,
J.-P.
,
2017
, “
Advanced Fatigue Analysis of Metal Lattice Structures Produced by Selective Laser Melting
,”
CIRP Ann.
,
66
(
1
), pp.
221
224
.
38.
Du Plessis
,
A.
,
Yadroitsev
,
I.
,
Yadroitsava
,
I.
, and
Le Roux
,
S. G.
, “
X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications
,”
3D Print. Addit. Manuf.
,
5
(
3
), pp.
227
247
.
39.
ISO
,
2011
, “
Mechanical Testing of Metals—Ductility Testing—Compression Test for Porous and Cellular Metals
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 13314:2011(En).https://www.iso.org/obp/ui/#iso:std:iso:13314:ed-1:v1:en
40.
Gu
,
D.
,
Hagedorn
,
Y. C.
,
Meiners
,
W.
,
Meng
,
G.
,
Batista
,
R. J. S.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium
,”
Acta Mater.
,
60
(
9
), pp.
3849
3860
.
41.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
Machado
,
B. I.
,
Hernandez
,
D. H.
,
Martinez
,
L.
,
Lopez
,
M. I.
,
Wicker
,
R. B.
, and
Bracke
,
J.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc., A
,
368
(
1917
), pp.
1999
2032
.
42.
ISO
,
2006
, “
Implants for Surgery—Metallic Materials—Classification of Microstructures for Alpha+Beta Titanium Alloy Bars
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 20160:2006(en).https://www.iso.org/obp/ui/#iso:std:iso:20160:ed-1:v2:en
43.
Han
,
J.
,
Yang
,
J.
,
Yu
,
H.
,
Yin
,
J.
,
Gao
,
M.
,
Wang
,
Z.
, and
Zeng
,
X.
,
2017
, “
Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V Dependence on Laser Energy Density
,”
Rapid Prototyping J.
,
23
(
2
), pp.
217
226
.
44.
Gunenthiram
,
V.
,
Peyre
,
P.
,
Schneider
,
M.
,
Dal
,
M.
,
Coste
,
F.
,
Fabbro
,
R.
,
Erie Gunenthiram
,
V.
,
Ed Eric Coste
,
F.
, and
Emy Fabbro
,
R.
,
2017
, “
Analysis of Laser-Melt Pool-Powder Bed Interaction During the Selective Laser Melting of a Stainless Steel
,”
J. Laser Appl.
,
29
(
2
), p.
22303
.
45.
Tsopanos
,
S.
,
Mines
,
R. A. W.
,
McKown
,
S.
,
Shen
,
Y.
,
Cantwell
,
W. J.
,
Brooks
,
W.
, and
Sutcliffe
,
C. J.
,
2010
, “
The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041011
.
46.
Tan
,
P. J.
,
Harrigan
,
J. J.
, and
Reid
,
S. R.
,
2002
, “
Inertia Effects in Uniaxial Dynamic Compression of a Closed Cell Aluminium Alloy Foam
,”
Mater. Sci. Technol.
,
18
(
5
), pp.
480
488
.
47.
Yu
,
B.
,
Chien
,
K. H.
,
Samk
,
K. A.
, and
Hibbard
,
G. D.
,
2018
, “
A Mechanism for Energy Absorption: Sequential Micro-Kinking in Ceramic Reinforced Aluminum Alloy Lattices During Out-of-Plane Compression
,”
Mater. Sci. Eng. A
,
716
, pp.
11
22
.
48.
Frost
,
H. M.
,
1990
, “
Skeletal Structural Adaptations to Mechanical Usage (SATMU): 1—Redefining Wolff's Law: The Bone Modelling Problem
,”
Anat. Rec.
,
226
(
4
), pp.
423
432
.
49.
Alvarez
,
K.
, and
Nakajima
,
H.
,
2009
, “
Metallic Scaffolds for Bone Regeneration
,”
Materials (Basel)
,
2
(
3
), pp.
790
832
.
You do not currently have access to this content.