The task of a powered knee orthotic device (PKOD) is to assist the knee joint so that its natural behavior can be restored. The key features of a PKOD that may help to regain such characteristics are low power consumption, fast response, compactness, and lightweight. This study proposes a novel design of PKOD, where we have focused on the betterment of the mentioned features with the help of a new mechanism, namely a four-bar controlled compliance actuator (FCCA). In FCCA, instead of using the widely used screw transmission mechanism, a four-bar mechanism is used to modify the joint's angular deviation and stiffness. The main advantages of using FCCA over other existing mechanisms are to reduce the power consumption by amplification of input motor torque and to achieve a faster response at the same time, and these are achieved by utilizing a simple four-bar mechanism. In the proposed design, FCCA controls both the stiffness of the artificial knee joint using a compliance mechanism as well as knee flexion with the help of a pulley arrangement. A three-dimensional (3D)-printed prototype of the proposed design has been developed, after optimizing the inherent design parameters. Simulation and experimental analysis are carried out in order to justify the performance of the proposed PKOD. The results have shown strong agreement with that obtained using analytical study and optimization. Moreover, the torque amplification is achieved, as desired.

References

References
1.
Winter
,
D. A.
,
1995
, “
Human Balance and Posture Control During Standing and Walking
,”
Gait Posture
,
3
(
4
), pp.
193
214
.
2.
Sup
,
F.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Upslope Walking With a Powered Knee and Ankle Prosthesis: Initial Results With an Amputee Subject
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
1
), pp.
71
78
.
3.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.
4.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2019
, “
Knee Exoskeletons for Gait Rehabilitation and Human Performance Augmentation: A State-of-the-Art
,”
Mech. Mach. Theory
,
134
, pp.
499
511
.
5.
Ohta
,
Y.
,
Yano
,
H.
,
Suzuki
,
R.
,
Yoshida
,
M.
,
Kawashima
,
N.
, and
Nakazawa
,
K.
,
2007
, “
A Two-Degree-of-Freedom Motor-Powered Gait Orthosis for Spinal Cord Injury Patients
,”
Proc. Inst. Mech. Eng., Part H
,
221
(
6
), pp.
629
639
.
6.
Skelton
,
J.
,
Wu
,
S. K.
, and
Shen
,
X.
,
2013
, “
Design of a Powered Lower-Extremity Orthosis for Sit-to-Stand and Ambulation Assistance
,”
ASME J. Med. Devices
,
7
(
3
), p.
030910
.
7.
Pott
,
P. P.
,
Wolf
,
S. I.
,
Block
,
J.
,
van Drongelen
,
S.
,
Grün
,
M.
,
Heitzmann
,
D. W. W.
,
Hielscher
,
J.
,
Horn
,
A.
,
Müller
,
R.
,
Rettig
,
O.
,
Konigorski
,
U.
,
Werthschützky
,
R.
,
Schlaak
,
H. F.
, and
Meiß
,
T.
,
2017
, “
Knee-Ankle-Foot Orthosis With Powered Knee for Support in the Elderly
,”
Proc. Inst. Mech. Eng., Part H
,
231
(
8
), pp.
715
727
.
8.
Elliott
,
G.
,
Marecki
,
A.
, and
Herr
,
H.
,
2014
, “
Design of a Clutch–Spring Knee Exoskeleton for Running
,”
ASME J. Med. Devices
,
8
(
3
), p.
031002
.
9.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
10.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2012
, “
A Compact Rotary Series Elastic Actuator for Human Assistive Systems
,”
IEEE/ASME Trans. Mechatronics
,
17
(
2
), pp.
288
297
.
11.
dos Santos
,
W. M.
,
Caurin
,
G. A.
, and
Siqueira
,
A. A.
,
2017
, “
Design and Control of an Active Knee Orthosis Driven by a Rotary Series Elastic Actuator
,”
Control Eng. Pract.
,
58
, pp.
307
318
.
12.
Kim
,
S.
, and
Bae
,
J.
,
2017
, “
Force-Mode Control of Rotary Series Elastic Actuators in a Lower Extremity Exoskeleton Using Model-Inverse Time Delay Control
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1392
1400
.
13.
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2011
, “
A New Variable Stiffness Actuator (CompAct-VSA): Design and Modelling
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
378
383
.
14.
Cestari
,
M.
,
Sanz-Merodio
,
D.
,
Arevalo
,
J. C.
, and
Garcia
,
E.
,
2015
, “
An Adjustable Compliant Joint for Lower-Limb Exoskeletons
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
889
898
.
15.
Van Ham
,
R.
,
Vanderborght
,
B.
,
Van Damme
,
M.
,
Verrelst
,
B.
, and
Lefeber
,
D.
,
2007
, “
MACCEPA, the Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator: Design and Implementation in a Biped Robot
,”
Rob. Auton. Syst.
,
55
(
10
), pp.
761
768
.
16.
Wang
,
S.
,
Wang
,
L.
,
Meijneke
,
C.
,
van Asseldonk
,
E.
,
Hoellinger
,
T.
,
Cheron
,
G.
,
Ivanenko
,
Y.
,
La Scaleia
,
V.
,
Sylos-Labini
,
F.
,
Molinari
,
M.
,
Tamburella
,
F.
,
Pisotta
,
I.
,
Thorsteinsson
,
F.
,
Ilzkovitz
,
M.
,
Gancet
,
J.
,
Nevatia
,
Y.
,
Hauffe
,
R.
,
Zanow
,
F.
, and
van der Kooij
,
H.
,
2015
, “
Design and Control of the MINDWALKER Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
277
286
.
17.
Chen
,
G.
, and
Yu
,
H.
,
2014
, “
A Portable Powered Knee-Ankle-Foot Orthosis
,”
ASME J. Med. Devices
,
8
(
2
), p.
020927
.
18.
Chen
,
G.
,
Qi
,
P.
,
Guo
,
Z.
, and
Yu
,
H.
,
2016
, “
Mechanical Design and Evaluation of a Compact Portable Knee–Ankle–Foot Robot for Gait Rehabilitation
,”
Mech. Mach. Theory
,
103
, pp.
51
64
.
19.
Bacek
,
T.
,
Moltedo
,
M.
,
Rodriguez-Guerrero
,
C.
,
Geeroms
,
J.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Design and Evaluation of a Torque-Controllable Knee Joint Actuator With Adjustable Series Compliance and Parallel Elasticity
,”
Mech. Mach. Theory
,
130
, pp.
71
85
.
20.
Zhu
,
H.
,
Doan
,
J.
,
Stence
,
C.
,
Lv
,
G.
,
Elery
,
T.
, and
Gregg
,
R.
,
2017
, “
Design and Validation of a Torque Dense, Highly Backdrivable Powered Knee-Ankle Orthosis
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
504
510
.
21.
Karavas
,
N.
,
Ajoudani
,
A.
,
Tsagarakis
,
N.
,
Saglia
,
J.
,
Bicchi
,
A.
, and
Caldwell
,
D.
,
2015
, “
Tele-Impedance Based Assistive Control for a Compliant Knee Exoskeleton
,”
Rob. Auton. Syst.
,
73
, pp.
78
90
.
22.
Bacek
,
T.
,
Moltedo
,
M.
,
Langlois
,
K.
,
Rodriguez-Guerrero
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2017
, “
A Novel Modular Compliant Knee Joint Actuator for Use in Assistive and Rehabilitation Orthoses
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
5812
5817
.
23.
Grosu
,
V.
,
Rodriguez Guerrero
,
C.
,
Grosu
,
S.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2017
, “
Design of Smart Modular Variable Stiffness Actuators for Robotic Assistive Devices
,”
IEEE/ASME Trans. Mechatron
,
22
(
4
), pp.
1777
1785
.
24.
Noh
,
J.
,
Kwon
,
J.
,
Yang
,
W.
,
Oh
,
Y.
, and
Bae
,
J. H.
,
2016
, “
A 4-Bar Mechanism Based for Knee Assist Robotic Exoskeleton Using Singular Configuration
,”
42nd Annual Conference of the IEEE Industrial Electronics Society (IECON)
,
Florence, Italy
,
Oct. 23–26
, pp.
674
680
.
25.
Sahoo
,
S.
,
Pratihar
,
D. K.
, and
Mukhopadhyay
,
S.
,
2018
, “
A Novel Energy Efficient Powered Ankle Prosthesis Using Four-Bar Controlled Compliant Actuator
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
24
), pp.
4664
4675
.
26.
Winter
,
D. A.
,
1991
,
Biomechanics and Motor Control of Human Gait: Normal, Elderly Pathological
,
Waterloo Biomechanics
,
Waterloo, ON, Canada
.
27.
Sahoo
,
S.
,
Jain
,
A.
, and
Pratihar
,
D. K.
,
2018
, “
Reduction of Jerk Through Optimization of a Knee Assistive Device Designed Using Four-Bar Controlled Compliance Actuator
,” ASME Paper No. IMECE2018-87012.
28.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems 95.'Human Robot Interaction and Cooperative Robots',
Pittsburgh, PA
,
Aug. 5–9
, pp.
399
406
.
29.
Ghosh
,
A.
, and
Mallik
,
A. K.
,
1994
,
Theory of Mechanisms and Machines
,
Affiliated East-West Press
,
New Delhi
.
30.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Sixth International Symposium on Micro Machine and Human Science (MHS'95)
,
Nagoya, Japan
,
Oct. 4–6
, pp.
39
43
.
31.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
You do not currently have access to this content.