The demand for simulation-based skills training in orthopedics is steadily growing. Wire navigation, or the ability to use 2D images to place an implant through a specified path in bone, is an area of training that has been difficult to simulate given its reliance on radiation-based fluoroscopy. Our group previously presented on the development of a wire navigation simulator for a hip fracture module. In this paper, we present a new methodology for extending the simulator to other surgical applications of wire navigation. As an example, this paper focuses on the development of an iliosacral wire navigation simulator. We define three criteria that must be met to adapt the underlying technology to new areas of wire navigation; surgical working volume, system precision, and tactile feedback. The hypothesis being that techniques, which fall within the surgical working volume of the simulator, demand a precision less than or equal to what the simulator can provide, and that require the tactile feedback offered through simulated bone can be adopted into the wire navigation module and accepted as a valid simulator for the surgeons using it. Using these design parameters, the simulator was successfully configured to simulate the task of drilling a wire for an iliosacral screw. Residents at the University of Iowa successfully used this new module with minimal technical errors during use.

References

References
1.
ACGME
,
2001
, “
ACGME Highlights Its Standards on Resident Duty Hours
,” Accreditation Council for Graduate Medical Education, Chicago IL, accessed May 20, 2018, http://www.acgme.org/acgmeweb/tabid/363/Publications/Papers/PositionPapers/HighlightsItsStandardsonResidentDutyHours.aspx
2.
ACGME
,
2011
, “
ACGME Program Requirements for Graduate Medical Education in Orthopaedic Surgery
,” Accreditation Council for Graduate Medical Education, Chicago IL, accessed May 20, 2018, https://www.acgme.org/Portals/0/PFAssets/ProgramRequirements/260_orthopaedic_surgery_2017-07-01.pdf
3.
Ferguson
,
P. C.
,
Kraemer
,
W.
,
Nousiainen
,
M.
,
Safir
,
O.
,
Sonnadara
,
R.
,
Alman
,
B.
, and
Reznick
,
R.
,
2013
, “
Three-Year Experience With an Innovative, Modular Competency-Based Curriculum for Orthopaedic Training
,”
J Bone Jt. Surg Am.
,
95
(
21
), p.
e166
.
4.
Khanduja
,
V.
,
Lawrence
,
J. E.
, and
Audenaert
,
E.
,
2017
, “
Testing the Construct Validity of a Virtual Reality Hip Arthroscopy Simulator
,”
Arthroscopy
,
33
(
3
), pp.
566
571
.
5.
Lopez
,
G.
,
Martin
,
D. F.
,
Wright
,
R.
,
Jung
,
J.
,
Hahn
,
P.
,
Jain
,
N.
,
Bracey
,
D. N.
, and
Gupta
,
R.
,
2016
, “
Construct Validity for a Cost-Effective Arthroscopic Surgery Simulator for Resident Education
,”
J. Am. Acad. Orthop. Surg.
,
24
(
12
), pp.
886
894
.
6.
Tay
,
C.
,
Khajuria
,
A.
, and
Gupte
,
C.
,
2014
, “
Simulation Training: A Systematic Review of Simulation in Arthroscopy and Proposal of a New Competency-Based Training Framework
,”
Int. J. Surg.
,
12
(
6
), pp.
626
633
.
7.
Carpenter
,
J. E.
,
Hurwitz
,
S. R.
,
James
,
M. A.
,
Jeffries
,
J. T.
,
Marsh
,
J. L.
,
Martin
,
D. F.
,
Murray
,
P. M.
,
Parsons
,
B. O.
,
Pedowitz
,
R. A.
,
Toolan, B
,
C.
,
van Heest, A.
E.
, and
Wongworawat, M.
D.
,
2013
, “
ABOS Surgical Skills Modules for PGY-1 Residents
,” The American Board of Orthopaedic Surgery. Chapel Hill, NC, accessed May 20, 2018, https://www.abos.org/abos-surgical-skills-modules-for-pgy-1-residents.aspx
8.
Long
,
S. A.
,
Thomas
,
G. W.
, and
Anderson
,
D. D.
,
2016
, “
Designing an Affordable Wire Navigation Surgical Simulator
,”
ASME J. Med. Devices
,
10
(
3
), p.
030921
.
9.
Centers for Disease Control and Prevention
,
2016
, “
Hip Fractures Among Older Adults
,” Centers for Disease Control and Prevention, Atlanta, GA, accessed May 20, 2018, https://www.cdc.gov/homeandrecreationalsafety/falls/adulthipfx.html
10.
FARO Technologies, Inc.
,
2018
, “
Technical Specification Sheet for the Edge FaroArm and ScanArm
,” FARO Technologies, Lake Mary, FL, accessed May 20, 2018, https://knowledge.faro.com/Hardware/FaroArm_and_ScanArm/USB_FaroArm/Technical_Specification_Sheet_for_the_Edge_FaroArm_and_ScanArm?mt-learningpath=faro_edge_downloads
11.
Bydon
,
M.
,
De La Garza-Ramos
,
R.
,
Macki
,
K.
,
Desai
,
A.
,
Gokaslan
,
A. K.
, and
Bydon
,
A.
,
2014
, “
Incidence of Sacral Fractures and In-Hospital Postoperative Complications in the United States: An Analysis of 2002–2011 Data
,”
Spine
,
39
(
18
), pp.
E1103
E1109
.
12.
Riehl
,
J.
, and
Widmaier
,
J.
,
2012
, “
A Simulator Model for Sacroiliac Screw Placement
,”
J. Surg. Educ.
,
69
(
3
), pp.
282
285
.
13.
Broder
,
J. M.
,
2004
, “
In Science's Name, Lucrative Trade in Body Parts
,” The New York Times, New York.
14.
Tonetti
,
J.
,
Overschelde
,
J.
,
Sadok
,
B.
,
Vouaillat
,
H.
, and
Eid
,
A.
,
2013
, “
Percutaneous Ilio-Sacral Screw Insertion. Fluoroscopic Techniques
,”
Orthop. Traumatol. Surg. Res.
,
99
(
8
), pp.
784
791
.
15.
Alvis-Miranda
,
H. R.
,
Farid-Escorcia
,
H.
,
Alcalá-Cerra
,
G.
,
Castellar-Leones
,
S. M.
, and
Moscote-Salazar
,
L. R.
,
2014
, “
Sacroiliac Screw Fixation: A Mini Review of Surgical Technique
,”
J. Craniovertebral Junction Spine
,
5
(
3
), pp.
110
113
.
16.
Keating
,
J. F.
,
Werier
,
J.
,
Blachut
,
P.
,
Broekhuyse
,
H.
,
Meek
,
R. N.
, and
O'Brien
,
P. J.
,
1999
, “
Early Fixation of the Vertically Unstable Pelvis: The Role of Iliosacral Screw Fixation of the Posterior Lesion
,”
J. Orthop. Trauma
,
13
(
2
), pp.
107
713
.
17.
Tonetti
,
J.
,
Carrat
,
L.
,
Blendea
,
S.
,
Merloz
,
P.
,
Troccaz
,
J.
,
Lavallée
,
S.
, and
Chirossel
,
J.-P.
,.
2001
, “
Clinical Results of Percutaneous Pelvic Surgery. Computer Assisted Surgery Using Ultrasound Compared to Standard Fluoroscopy
,”
Comput. Aided Surg.
,
6
(
4
), pp.
204
411
.
18.
Routt
,
M. C.
, Jr
Simonian
,
P. T.
, and
Mills
,
W. J.
,
1997
, “
Iliosacral Screw Fixation: Early Complications of the Percutaneous Technique
,”
J. Orthop. Trauma
,
11
(
8
), pp.
584
589
.
19.
Mendel
,
T.
,
Radetzki
,
F.
,
Wohlrab
,
D.
,
Stock
,
K.
,
Hofmann
,
G.
, and
Noser
,
H.
,
2013
, “
CT-Based 3-D Visualisation of Secure Bone Corridors and Optimal Trajectories for Sacroiliac Screws
,”
Injury
,
44
(
7
), pp.
957
963
.
You do not currently have access to this content.