Stent grafts are medical devices used to treat abdominal aortic aneurysms (AAAs) in endovascular aneurysm repair (EVAR). Computational and experimental models have been developed to study stent graft delivery and deployment during EVAR; however, frictional properties have not been taken into account in most previous studies. The objective of this study was to determine the coefficients of friction of three commercially available stent grafts (Cook Zenith, Medtronic Endurant, and Vascutek Anaconda), their delivery sheaths, a porcine aorta, and two mock arterial materials. Stent grafts were obtained and separated into stents, graft fabric, and sheaths. Using a custom-made friction measurement apparatus, the coefficients of friction were measured between five material pairs: (i) the stents and inner surface of the sheath, (ii) the graft fabric and inner surface of the sheath, (iii) the outer surface of the sheath and a porcine aorta, (iv) the outer surface of the sheath and three different polyvinyl alcohol (PVA) cryogels, and (v) the outer surface of the sheath and a polydimethylsiloxane (PDMS) sheet. The results show that the coefficients of friction between the graft fabric and the sheath were higher than those between the stents and the sheath. The PVA cryogels showed more comparable frictional properties to the porcine aorta than did the PDMS sheet, suggesting that PVA cryogels provide a more accurate approximation for the in vivo frictional properties. These results can be used to improve the accuracy of computational models for stent graft delivery and deployment and to select appropriate materials for vascular phantoms.

References

References
1.
Sakalihasan
,
N.
,
Limet
,
R.
, and
Defawe
,
O. D.
,
2005
, “
Abdominal Aortic Aneurysm
,”
Lancet
,
365
(
9470
), pp.
1577
1589
.
2.
Segalova
,
P. A.
,
Xiong
,
G.
,
Rao
,
K. T.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2011
, “
Evaluating Design of Abdominal Aortic Aneurysm Endografts in a Patient-Specific Model Using Computational Fluid Dynamics
,”
ASME J. Med. Devices
,
5
(
2
), p.
027505
.
3.
Pereles
,
B. D.
, and
Ong
,
K. G.
,
2008
, “
A Wireless, Passive Sensor for Monitoring the Pressure of an Abdominal Aortic Aneurysm Sac
,”
ASME J. Med. Devices
,
2
(
2
), p.
027557
.
4.
Rylski
,
B.
,
Czerny
,
M.
,
Südkamp
,
M.
,
Russe
,
M.
,
Siepe
,
M.
, and
Beyersdorf
,
F.
,
2015
, “
Fenestrated and Branched Aortic Grafts: Patency, Perioperative Mortality and Spinal Ischemia
,”
Dtsch. Äerztebl. Int.
,
112
(
48
), pp.
816
822
.
5.
Crawford
,
S. A.
,
Sanford
,
R. M.
,
Doyle
,
M. G.
,
Wheatcroft
,
M.
,
Amon
,
C. H.
, and
Forbes
,
T. L.
,
2018
, “
Prediction of Advanced Endovascular Stent Graft Rotation and Its Associated Morbidity and Mortality
,”
J. Vasc. Surg.
,
68
(
2
), pp.
348
355
.
6.
Sanford
,
R. M.
,
Crawford
,
S. A.
,
Genis
,
H.
,
Doyle
,
M. G.
,
Forbes
,
T. L.
, and
Amon
,
C. H.
,
2018
, “
Predicting Rotation in Fenestrated Endovascular Aneurysm Repair Using Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
140
(
9
), p.
091004
.
7.
Kleinstreuer
,
C.
,
Li
,
Z.
,
Basciano
,
C. A.
,
Seelecke
,
S.
, and
Farber
,
M. A.
,
2008
, “
Computational Mechanics of Nitinol Stent Grafts
,”
ASME J. Biomech. Eng.
,
41
(
11
), pp.
2370
2378
.
8.
Demanget
,
N.
,
Duprey
,
A.
,
Badel
,
P.
,
Orgéas
,
L.
,
Avril
,
S.
,
Geindreau
,
C.
,
Albertini
,
J. N.
, and
Favre
,
J. P.
,
2013
, “
Finite Element Analysis of the Mechanical Performances of 8 Marketed Aortic Stent-Grafts
,”
J. Endovasc. Ther.
,
20
(
4
), pp.
523
535
.
9.
Demanget
,
N.
,
Avril
,
S.
,
Badel
,
P.
,
Orgéas
,
L.
,
Geindreau
,
C.
,
Albertini
,
J. N.
, and
Favre
,
J. P.
,
2012
, “
Computational Comparison of the Bending Behavior of Aortic Stent-Grafts
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
272
282
.
10.
Saraswat
,
P.
,
Chinnakonda
,
M.
, and
Baillargeon
,
B.
,
2016
, “
Living Heart Human Model: Cardiovascular Stent Deployment and Cardiac Cycle Simulation
,”
ASME J. Med. Devices
,
10
(
3
), p.
030945
.
11.
Suess
,
T. N.
,
Gent
,
S. P.
,
Remund
,
T.
, and
Kelly
,
P.
,
2015
, “
Analysis of Stent-Graft Design for Aortic Aneurysm Repair Using Computational Fluid Dynamics
,”
ASME J. Med. Devices
,
9
(
3
), p.
030943
.
12.
Shek
,
T. L.
,
Tse
,
L. W.
,
Nabovati
,
A.
, and
Amon
,
C. H.
,
2012
, “
Computational Fluid Dynamics Evaluation of the Cross-Limb Stent Graft Configuration for Endovascular Aneurysm Repair
,”
ASME J. Biomech. Eng.
,
134
(
12
), p.
121002
.
13.
Sun
,
Q.
,
Groth
,
A.
,
Bertram
,
M.
,
Waechter
,
I.
,
Bruijns
,
T.
,
Hermans
,
R.
, and
Aach
,
T.
,
2010
, “
Phantom-Based Experimental Validation of Computational Fluid Dynamics Simulations on Cerebral Aneurysms
,”
Med. Phys.
,
37
(
9
), pp.
5054
5065
.
14.
Cloonan
,
A. J.
,
Shahmirzadi
,
D.
,
Li
,
R. X.
,
Doyle
,
B. J.
,
Konofagou
,
E. E.
, and
McGloughlin
,
T. M.
,
2014
, “
3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications
,”
3D Print. Addit. Manuf.
,
1
(
1
), pp.
14
23
.
15.
Corbett
,
T. J.
,
Doyle
,
B. J.
,
Callanan
,
A.
,
Walsh
,
M. T.
, and
McGloughlin
,
T. M.
,
2010
, “
Engineering Silicone Rubbers for In Vivo Studies: Creating AAA Models and ILT Analogues With Physiological Properties
,”
AMSE J. Biomech. Eng.
,
132
(
1
), p.
011008
.
16.
Doyle
,
B. J.
,
Morris
,
L. G.
,
Callanan
,
A.
,
Kelly
,
P.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
,
2008
, “
3D Reconstruction and Manufacture of Real Abdominal Aortic Aneurysms: From CT Scan to Silicone Model
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
034501
.
17.
Couture
,
T.
, and
Szewczyk
,
J.
,
2017
, “
Design and Experimental Validation of an Active Catheter for Endovascular Navigation
,”
ASME J. Med. Devices
,
12
(
1
), p.
011003
.
18.
Raptis
,
A.
,
Xenos
,
M.
,
Georgakarakos
,
E.
,
Kouvelos
,
G.
,
Giannoukas
,
A.
, and
Matsagkas
,
M.
,
2017
, “
Hemodynamic Profile of Two Aortic Endografts Accounting for Their Postimplantation Position
,”
ASME J. Med. Devices
,
11
(
2
), p.
021003
.
19.
He
,
Z.
,
Mongrain
,
R.
,
Chayer
,
B.
,
Cloutier
,
G.
, and
Soulez
,
G.
,
2018
, “
Tissue-Mimicking Mockup for Abdominal Aortic Aneurysm—Effect of Surrounding Tissue
,”
Eighth World Congress of Biomechanics
, Dublin, Ireland, July 8–12, p.
P4631
.
20.
Wu
,
W.
,
Qi
,
M.
,
Liu
,
X. P.
,
Yang
,
D. Z.
, and
Wang
,
W. Q.
,
2007
, “
Delivery and Release of Nitinol Stent in Carotid Artery and Their Interactions: A Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
40
(
13
), pp.
3034
3040
.
21.
Petrini
,
L.
,
Migliavacca
,
F.
,
Massarotti
,
P.
,
Schievano
,
S.
,
Dubini
,
G.
, and
Auricchio
,
F.
,
2005
, “
Computational Studies of Shape Memory Alloy Behavior in Biomedical Applications
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
716
725
.
22.
Chen
,
Y. M.
,
Kurokawa
,
T.
,
Tominaga
,
T.
,
Yasuda
,
K.
,
Osada
,
Y.
,
Gong
,
J. P.
,
Yamamoto
,
K.
, and
Ando
,
J.
,
2010
, “
Study on the Sliding Friction of Endothelial Cells Cultured on Hydrogel and the Role of Glycocalyx on Friction Reduction
,”
Adv. Eng. Mater.
,
12
(
11
), pp.
B628
B636
.
23.
De Bock
,
S.
,
Iannaccone
,
F.
,
De Santis
,
G.
,
De Beule
,
M.
,
Loo
,
D. V.
,
Devos
,
D.
,
Vermassen
,
F.
,
Segers
,
P.
, and
Verhegghe
,
B.
,
2012
, “
Virtual Evaluation of Stent Graft Deployment: A Validated Modeling and Simulation Study
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
129
139
.
24.
Vad
,
S.
,
Eskinazi
,
A.
,
Corbett
,
T.
,
McGloughlin
,
T.
, and
Geest
,
J. P. V.
,
2010
, “
Determination of Coefficient of Friction for Self-Expanding Stent-Grafts
,”
ASME J. Biomech. Eng.
,
132
(
12
), p.
121007
.
25.
King
,
D. M.
,
Moran
,
C. M.
,
McNamara
,
J. D.
,
Fagan
,
A. J.
, and
Browne
,
J. E.
,
2011
, “
Development of a Vessel-Mimicking Material for Use in Anatomically Realistic Doppler Flow Phantoms
,”
Ultrasound Med. Biol.
,
37
(
5
), pp.
813
826
.
26.
Crawford
,
S. A.
,
Doyle
,
M. G.
,
Amon
,
C. H.
, and
Forbes
,
T. L.
,
2018
, “
The Influence of Surgical Technique on Device Rotation and Fenestration Alignment in Advanced Endovascular Aneurysm Repair
,”
J. Vasc. Surg.
,
68
(
3
), p. e71.
27.
Doyle
,
G.
,
M.
,
Lancaster
,
M.
,
Tse
,
L. W.
,
Forbes
,
T. L.
, and
Amon
,
C. H.
,
2016
, “
Measurement of Aortic Stent Graft Coefficients of Friction
,”
Summer Biomechanics Bioengineering and Biotransport Conference
, National Harbor, MD, June 29–July 2, p. SB3C2016-60.
28.
Naduvinamani
,
N. B.
, and
Savitramma
,
G. K.
,
2013
, “
Squeeze Film Lubrication Between Rough Poroelastic Rectangular Plates With Micropolar Fluid: A Special Reference to the Study of Synovial Joint Lubrication
,”
ISRN Tribol.
,
2013
, p.
431508
.
29.
Niemczyk
,
A.
,
Fray
,
M. E.
, and
Franklin
,
S. E.
,
2015
, “
Friction Behaviour of Hydrophilic Lubricious Coatings for Medical Device Applications
,”
Tribol. Int.
,
89
, pp.
54
61
.
30.
Ohta
,
M.
,
Handa
,
A.
,
Iwata
,
H.
,
Rufenacht
,
D. A.
, and
Tsutsumi
,
S.
,
2004
, “
Poly-Vinyl Alcohol Hydrogel Vascular Models for In Vivo Aneurysm Simulations: The Key to Low Friction Surfaces
,”
Technol. Health Care
,
12
(
3
), pp.
225
233
.https://content.iospress.com/articles/technology-and-health-care/thc00335
31.
Hassan
,
C. M.
, and
Peppas
,
N. A.
,
2000
, “
Structure and Applications of Poly(Vinyl Alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods
,”
Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites
(Advance in Polymer Science), Vol.
153
,
Springer
,
Berlin
.
32.
Weaver
,
J. D.
, and
Ku
,
D. N.
,
2010
, “
Mechanical Evaluation of Polyvinyl Alcohol Cryogels for Covered Stents
,”
ASME J. Med. Devices
,
4
(
3
), p.
031002
.
33.
Owen
,
M. J.
,
2001
, “
Elastomers: Siloxane,” Encyclopedia of Materials: Science and Technology
,
Elsevier
,
New York
, pp.
2480
2482
.
34.
Kazmierska
,
K.
,
Szwast
,
M.
, and
Ciach
,
T.
,
2008
, “
Determination of Urethral Catheter Surface Lubricity
,”
J. Mate. Sci. Mater. Med.
,
19
(
6
), pp.
2301
2306
.
35.
LaPorte
,
R. J.
,
1997
,
Hydrophilic Polymer Coatings for Medical Devices
(Structure/Properties, Development, Manufacture and Applications),
CRC Press
,
New York
, pp.
157
163
.
36.
Braun
,
O. M.
, and
Peyrard
,
M.
,
2011
, “
Dependence of Kinetic Friction on Velocity: Master Equation Approach
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
,
83
(
4 Pt. 2
), p.
046129
.
37.
Mamada
,
K.
,
Fridrici
,
V.
,
Kosukegawa
,
H.
,
Kapsa
,
P.
, and
Ohta
,
M.
,
2011
, “
Friction Properties of Poly(Vinyl Alcohol) Hydrogel: Effects of Degree of Polymerization and Saponification Value
,”
Tribol. Lett.
,
42
(
2
), pp.
241
251
.
38.
Mamada
,
K.
,
Kosukegawa
,
H.
,
Fridrici
,
V.
,
Kapsa
,
P.
, and
Ohta
,
M.
,
2011
, “
Friction Properties of PVA-H/Steel Ball Contact Under Water Lubrication Conditions
,”
Trib. Int.
,
44
(
7–8
), pp.
757
763
.
You do not currently have access to this content.