Accurate location of the puncture-guiding template, including the position and orientation, is essential for surgeons to implant radioactive seeds into an internal tumor in lung cancer brachytherapy. The objective of this paper is to establish a real-time tracking and visualization system (RTVS) to monitor the robot-assisted location process distantly and confirm the ultimate location accuracy without redundant computed tomography (CT) scans. RTVS consists of tracking and visualization components. A quaternion-based iterative closest point (QICP) algorithm for higher accuracy was proposed for the premised module of spatial registration. Arithmetic accuracy of QICP and clinical performance of RTVS were both validated by a series of experiments in a CT room. Spatial registration experiment shows that QICP consistently presents a distinctly higher degree of accuracy of 0.87±0.11 mm compared with other two conventional algorithms. RTVS, evaluated by tracking and visualization experiments, achieves a tracking accuracy of 1.05±0.05 mm position and (0.29±0.14) deg orientation. In addition, the time cost for template location is greatly reduced, so are the CT scan times. RTVS has the potential on lessening the workload of surgeons, reducing the CT radiation injury to the patient, and accelerating the progress of a brachytherapy surgery. The system presented means a new contribution to the lung cancer brachytherapy.

References

References
1.
Viswanath
,
S.
,
Pathak
,
A.
,
Kapoor
,
A.
,
Rathore
,
A.
, and
Kapur
,
B. N.
,
2016
, “
Changing Paradigm in Treatment of Lung Cancer
,”
J. Cancer Metastasis Treat.
,
2
(
6
), pp.
214
219
.
2.
Skowronek
,
J.
,
2015
, “
Brachytherapy in the Treatment of Lung Cancer—A Valuable Solution
,”
J. Contemp. Brachytherapy
,
7
(
4
), pp.
297
311
.
3.
Li
,
W.
,
Guan
,
J.
,
Yang
,
L.
,
Zheng
,
X.
,
Yu
,
Y.
, and
Jiang
,
J.
,
2015
, “
Iodine-125 Brachytherapy Improved Overall Survival of Patients With Inoperable Stage III/IV Non-Small Cell Lung Cancer Versus the Conventional Radiotherapy
,”
Med. Oncol.
,
32
(
1
), pp.
395
402
.
4.
Stewart
,
A.
,
Parashar
,
B.
,
Patel
,
M.
,
O'Farrell
,
D.
,
Biagioli
,
M.
,
Devlin
,
P.
, and
Mutyala
,
S.
,
2016
, “
American Brachytherapy Society Consensus Guidelines for Thoracic Brachytherapy for Lung Cancer
,”
Brachytherapy
,
15
(
1
), pp.
1
11
.
5.
Song
,
J.
,
Fan
,
X.
,
Zhao
,
Z.
,
Chen
,
M.
,
Chen
,
W.
,
Wu
,
F.
,
Zhang
,
D.
,
Li
,
C.
,
Tu
,
J.
, and
Ji
,
J.
,
2017
, “
125I Brachytherapy of Locally Advanced Non-Small-Cell Lung Cancer After One Cycle of First-Line Chemotherapy: A Comparison With Best Supportive Care
,”
OncoTargets Ther.
,
10
, pp.
1345
1352
.
6.
Jiang
,
Y.
, and
Sykes
,
E.
,
2015
, “
A 3D Computer-Assisted Treatment Planning System for Breast Cancer Brachytherapy Treatment
,”
Int. J. Comput. Assisted Radiol.
,
10
(
4
), pp.
373
381
.
7.
Hardin
,
M. T.
,
To
,
D. T.
,
Yu
,
Y.
,
Harrison
,
A. S.
, and
Doyle
,
L. A.
,
2016
, “
Commissioning of the MIM Symphony Low Dose Rate Brachytherapy Planning System for the Treatment of Head and Neck Cancers
,”
Brachytherapy
,
15
(
1
), pp.
S66
S67
.
8.
Zhang
,
G.
,
Sun
,
Q.
,
Shan
,
J.
,
Yang
,
Z.
,
Ma
,
X.
, and
Jiang
,
H.
,
2017
, “
Automatic Seed Picking for Brachytherapy Postimplant Validation With 3D CT Image
,”
Int. J. Comput. Assisted Radiol.
,
12
(
11
), pp.
1985
1993
.
9.
Huo
,
B.
,
Chai
,
S.
,
Wang
,
H.
,
Huo
,
X.
,
Wang
,
L.
,
Cao
,
Q.
,
Wang
,
L.
,
Zang
,
L.
,
Wang
,
J.
, and
Wang
,
H.
,
2017
, “
Radioactive Seed Implantation for Lung Cancer Brachytherapy Assisted by Template-Guided Combined Rib Drilling Technique: A Feasibility Study
,”
Brachytherapy
,
16
(
3
), p.
S93
.
10.
Dou
,
H.
,
Jiang
,
S.
,
Yang
,
Z.
,
Sun
,
L.
,
Ma
,
X.
, and
Huo
,
B.
,
2017
, “
Design and Validation of a CT-Guided Robotic System for Lung Cancer Brachytherapy
,”
Med. Phys.
,
44
(
9
), pp.
4828
4837
.
11.
Peters
,
T. M.
,
2001
, “
Image-Guided Surgery and Therapy: Current Status and Future Directions
,”
Proc. SPIE
,
4319
, pp.
1
12
.
12.
Zinßer
,
T.
,
Schmidt
,
J.
, and
Niemann
,
H.
,
2005
, “
Point Set Registration With Integrated Scale Estimation
,”
International Conference on Pattern Recognition and Information Processing
, Minsk, Belarus, pp. 116–119.
13.
Arnolli
,
M.
,
Buijze
,
M.
,
Franken
,
M.
,
Franken
,
M.
,
Jong
,
K.
,
Brouwer
,
D.
, and
Broeders
,
I.
,
2018
, “
System for CT-Guided Needle Placement in the Thorax and Abdomen: A Design for Clinical Acceptability, Applicability and Usability
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
14
(
1
), p.
e1877
.
14.
Lei
,
S.
,
2015
, “
Research on Spatial Registration Algorithm of the Surgery Navigation System
,” Ph.D. thesis, Hebei University of Technology, Hebei, China.
15.
Wang
,
H.
,
2012
, “
An Improved Method Based on Quaternion and Planar Segmentation Fit in 3D Registration
,”
International Conference on Information Engineering and Applications
, Chongqing, China, pp.
717
723
.
16.
Maier-Hein
,
L.
,
Franz
,
A. M.
,
Santos
,
T. R.
,
Schmidt
,
M.
,
Fangerau
,
M.
,
Meinzer
,
H. P.
, and
Fitzpatrick
,
J. M.
,
2012
, “
Convergent Iterative Closest-Point Algorithm to Accommodate Anisotropic and Inhomogeneous Localization Error
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
34
(
8
), pp.
1520
1532
.
17.
Lin
,
C. C.
,
Tai
,
Y. C.
,
Lee
,
J. J.
, and
Chen
,
Y. S.
,
2017
, “
A Novel Point Cloud Registration Using 2D Image Features
,”
EURASIP J. Adv. Signal Process.
,
2017
(
1
), p.
5
.
18.
Deng
,
H.
,
Chen
,
L.
,
Chen
,
X.
, and
Wang
,
C.
,
2008
, “
Research About Process Archive of Computerized Surgery Navigation Based on PACS
,”
J. Donghua Univ.
,
25
(
5
), pp.
495
499
.
19.
Racine
,
E.
,
Hautvast
,
G.
,
Binnekamp
,
D.
, and
Beaulieu
,
L.
,
2016
, “
Real-Time Electromagnetic Seed Drop Detection for Permanent Implants Brachytherapy: Technology Overview and Performance Assessment
,”
Med. Phys.
,
43
(
12
), pp.
6217
6225
.
20.
Nakagawa
,
T. H.
,
Moriya
,
É. T.
,
Maciel
,
C. D.
, and
Serrão
,
F. V.
,
2014
, “
Test-Retest Reliability of Three-Dimensional Kinematics Using an Electromagnetic Tracking System During Single-Leg Squat and Stepping Maneuver
,”
Gait Posture
,
39
(
1
), pp.
141
146
.
21.
de Lambert
,
A.
,
Esneault
,
S.
,
Lucas
,
A.
,
Haigron
,
P.
,
Cinquin
,
P.
, and
Magne
,
J. L.
,
2012
, “
Electromagnetic Tracking for Registration and Navigation in Endovascular Aneurysm Repair: A Phantom Study
,”
Eur. J. Vasc. Endovasc. Surg.
,
43
(
6
), pp.
684
689
.
22.
Hunsche
,
S.
,
Sauner
,
D.
,
Majdoub
,
F.
,
Neudorfer
,
C.
,
Poggenborg
,
J.
,
Gossmann
,
A.
, and
Maarouf
,
M.
,
2017
, “
Intensity-Based 2D 3D Registration for Lead Localization in Robot Guided Deep Brain Stimulation
,”
Phys. Med. Biol.
,
62
(
6
), pp.
2417
2426
.
23.
Holupka
,
E. J.
,
Meskell
,
P. M.
,
Burdette
,
E. C.
, and
Kaplan
,
I. D.
,
2004
, “
An Automatic Seed Finder for Brachytherapy CT Postplans Based on the Hough Transform
,”
Med. Phys.
,
31
(
9
), pp.
2672
2679
.
24.
Xin
,
W.
, and
Pu
,
J.
,
2011
, “
An Improved ICP Algorithm for Point Cloud Registration
,”
2010 International Conference on Computational and Information Sciences
, Chengdu, China, pp.
565
568
.
25.
Yang
,
J.
,
Li
,
H.
,
Campbell
,
D.
, and
Jia
,
Y.
,
2015
, “
Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
38
(
11
), pp.
2241
2254
.
26.
Li
,
Q.
, and G
riffiths
,
J. G.
,
2000
, “
Iterative Closest Geometric Objects Registration
,”
Comput. Math. Appl.
,
40
(
10–11
), pp.
1171
1188
.
27.
Chen
,
Y.
, and
Medioini
,
G.
,
1992
, “
Object Modeling by Registration of Multiple Range Images
,”
Image Vision Comput.
,
10
(
3
), pp.
145
155
.
28.
Blais
,
G.
, and
Levine
,
M. D.
,
1995
, “
Registering Multiview Range Data to Create 3D Computer Objects
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
17
(
8
), pp.
820
824
.
29.
Kim
,
G. R.
,
Jin
,
H.
,
Sang
,
M. L.
,
Lee
,
H. J.
,
Hong
,
Y. J.
,
Ji
,
E. N.
,
Hua
,
S. K.
,
Kim
,
Y. J.
,
Choi
,
B. W.
, and
Kim
,
T. H.
,
2011
, “
CT Fluoroscopy-Guided Lung Biopsy Versus Conventional CT-Guided Lung Biopsy: A Prospective Controlled Study to Assess Radiation Doses and Diagnostic Performance
,”
Eur. Radiol.
,
21
(
2
), pp.
232
239
.
30.
Hung
,
W. H.
,
Chang
,
C. C.
,
Ho
,
S. Y.
,
Liao
,
C. Y.
, and
Wang
,
B. Y.
,
2015
, “
Systemic Air Embolism Causing Acute Stroke and Myocardial Infarction After Percutaneous Transthoracic Lung Biopsy: A Case Report
,”
J. Cardiothorac. Surg.
,
10
, pp. 121–123.
31.
Schweikard
,
A.
,
Shiomi
,
H.
, and
Adler
,
J.
,
2004
, “
Respiration Tracking in Radiosurgery
,”
Med. Phys.
,
31
(
10
), pp.
2738
2741
.
32.
Hata
,
N.
,
Song
,
S. E.
,
Olubiyi
,
O.
,
Arimitsu
,
Y.
,
Fujimoto
,
K.
,
Kato
,
T.
,
Tuncali
,
K.
,
Tani
,
S.
, and
Tokuda
,
J.
,
2016
, “
Body-Mounted Robotic Instrument Guide for Image-Guided Cryotherapy of Renal Cancer
,”
Med. Phys.
,
43
(
2
), pp.
843
853
.
33.
Hungr
,
N.
,
Bricault
,
I.
,
Cinquin
,
P.
, and
Fouard
,
C.
,
2016
, “
Design and Validation of a CT- and MRI-Guided Robot for Percutaneous Needle Procedures
,”
IEEE. Trans. Rob.
,
32
(
4
), pp.
973
987
.
34.
Bricault
,
I.
,
Zemiti
,
N.
,
Jouniaux
,
E.
,
Fouard
,
C.
,
Taillant
,
E.
,
Dorandeu
,
F.
, and
Cinquin
,
P.
,
2008
, “
Light Puncture Robot for CT and MRI Interventions: Designing a New Robotic Architecture to Perform Abdominal and Thoracic Punctures
,”
IEEE Eng. Med. Biol.
,
27
(
3
), pp.
42
50
.
You do not currently have access to this content.