A fully implantable artificial pancreas (AP) still represents the holy grail for diabetes treatment. The quest for efficient miniaturized implantable insulin pumps, able to accurately regulate the blood glucose profile and to keep insulin stability, is still persistent. This work describes the design and testing of a microinjection system connected to a variable volume insulin reservoir devised to favor insulin stability during storage. The design, the constitutive materials, and the related fabrication techniques were selected to favor insulin stability by avoiding—or at least limiting—hormone aggregation. We compared substrates made of nylon 6 and Teflon, provided with different surface roughness values due to the employed fabrication procedures (i.e., standard machining and spray deposition). Insulin stability was tested in a worst case condition for 14 days, and pumping system reliability and repeatability in dosing were tested over an entire reservoir emptying cycle. We found that nylon 6 guarantees a higher insulin stability than Teflon and that independent of the material used, larger roughness determines a higher amount of insulin aggregates. A dedicated rotary pump featured by a 1-μL delivery resolution was developed and connected through a proper gear mechanism to a variable volume air-tight insulin reservoir. The microinjection system was also able to operate in a reverse mode to enable the refilling of the implanted reservoir. The developed system represents a fundamental building block toward the development of a fully implantable AP and could be advantageously integrated even in different implantable drug delivery apparatus (e.g., for pain management).

References

References
1.
Association
,
A. D.
,
2006
, “
Diagnosis and Classification of Diabetes Mellitus
,”
Diabetes Care
,
29
(
1
), p.
S43
.
2.
Peyser
,
T.
,
Dassau
,
E.
,
Breton
,
M.
, and
Skyler
,
J. S.
,
2014
, “
The Artificial Pancreas: Current Status and Future Prospects in the Management of Diabetes
,”
Ann. N. Y. Acad. Sci.
,
1311
(
1
), pp.
102
123
.
3.
Reach
,
G.
,
1992
, “
Artificial and Bioartificial Replacement of the Endocrine Pancreas
,”
Artif. Organs
,
16
(
1
), pp.
61
70
.
4.
Park
,
J.
,
Kalinin
,
Y. V.
,
Kadam
,
S.
,
Randall
,
C. L.
, and
Gracias
,
D. H.
,
2013
, “
Design for a Lithographically Patterned Bioartificial Endocrine Pancreas
,”
Artif. Organs
,
37
(
12
), pp.
1059
1067
.
5.
Harpstead
,
S.
,
2009
, “
Effect of Laminin on the Interaction Between Islets and an Implantable Immunoisolation Polyurethane Membrane
,”
ASME J. Med. Devices
,
3
(
2
), p.
027521
.
6.
Iacovacci
,
V.
,
Ricotti
,
L.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2016
, “
The Bioartificial Pancreas (BAP): Biological, Chemical and Engineering Challenges
,”
Biochem. Pharmacol.
,
100
, pp.
12
27
.
7.
Tsukamoto
,
Y.
,
Kinoshita
,
Y.
,
Kitagawa
,
H.
,
Munekage
,
M.
,
Munekage
,
E.
,
Takezaki
,
Y.
,
Yatabe
,
T.
,
Yamashita
,
K.
,
Yamazaki
,
R.
,
Okabayashi
,
T.
,
Tarumi
,
M.
,
Kobayashi
,
M.
,
Mishina
,
S.
, and
Hanazaki
,
K.
,
2013
, “
Evaluation of a Novel Artificial Pancreas: Closed Loop Glycemic Control System With Continuous Blood Glucose Monitoring
,”
Artif. Organs
,
37
(
4
), pp.
E67
E73
.
8.
Hoadley
,
D.
, and
Ananthan
,
A.
,
2013
, “
Using Modeling and Simulation in the Design of Closed-Loop Insulin Delivery System
,”
ASME J. Med. Devices
,
7
(
2
), p.
020923
.
9.
Lee
,
S. W.
, and
Welsh
,
J. B.
,
2015
, “
Upcoming Devices for Diabetes Management: The Artificial Pancreas as the Hallmark Device
,”
Diabetes Technol. Ther.
,
17
(
8
), pp.
538
541
.
10.
Ricotti
,
L.
,
Assaf
,
T.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2013
, “
Wearable and Implantable Pancreas Substitutes
,”
J. Artif. Organs
,
16
(
1
), pp.
9
22
.
11.
Dassau
,
E.
,
Renard
,
E.
,
Place
,
J.
,
Farret
,
A.
,
Pelletier
,
M. J.
,
Lee
,
J.
,
Huyett
,
L. M.
,
Chakrabarty
,
A.
,
Doyle
,
F. J.
, and
Zisser
,
H. C.
,
2017
, “
Intraperitoneal Insulin Delivery Provides Superior Glycemic Regulation to Subcutaneous Insulin Delivery in Model Predictive Control‐Based Fully‐Automated Artificial Pancreas in Patients With Type 1 Diabetes: A Pilot Study
,”
Diabetes Obes. Metab.
,
19
(
12
), pp.
1698
1705
.
12.
Taylor
,
M. J.
,
Gregory
,
R.
,
Mitchell
,
H.
,
Alblihed
,
M.
,
Alsabih
,
A.
,
Tomlins
,
P.
, and
Sahota
,
T. S.
,
2014
, “
Insulin Pump Users Would Not Rule Out Using an Implantable Artificial Pancreas
,”
Pract. Diabetes
,
31
(
1
), pp.
18
23a
.
13.
Lee
,
S. H.
,
Lee
,
Y. B.
,
Kim
,
B. H.
,
Lee
,
C.
,
Cho
,
Y. M.
,
Kim
,
S. N.
,
Park
,
C. G.
,
Cho
,
Y. C.
, and
Choy
,
Y. B.
,
2017
, “
Implantable Batteryless Device for On-Demand and Pulsatile Insulin Administration
,”
Nat. Commun.
,
8
, p.
15032
.
14.
Renard
,
E.
,
2004
, “
Implantable Insulin Delivery Pumps
,”
Minimally Invasive Ther. Allied Technol.
,
13
(
5–6
), pp.
328
335
.
15.
Yang
,
G.-Z.
,
Bellingham
,
J.
,
Dupont
,
P. E.
,
Fischer
,
P.
,
Floridi
,
L.
,
Full
,
R.
,
Jacobstein
,
N.
,
Kumar
,
V.
,
McNutt
,
M.
,
Merrifield
,
R.
,
Nelson
,
B. J.
,
Scassellati
,
B.
,
Taddeo
,
M.
,
Taylor
,
R.
,
Veloso
,
M.
,
Wang
,
Z. L.
, and
Wood
,
R.
,
2018
, “
The Grand Challenges of Science Robotics
,”
Sci. Rob.
,
3
(
14
), p.
eaar7650
.
16.
Iacovacci
,
V.
,
Ricotti
,
L.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2015
, “
Design and Development of a Mechatronic System for Noninvasive Refilling of Implantable Artificial Pancreas
,”
IEEE/ASME Trans. Mechatronics
,
20
(
3
), pp.
1160
1169
.
17.
Ricotti
,
L.
,
Assaf
,
T.
,
Stefanini
,
C.
, and
Menciassi
,
A.
,
2010
, “
System for Controlled Administration of a Substance From a Human-Body-Implanted Infusion Device
,” Sant'Anna School of Advanced Studies, Pisa, Italy, Patent No.
US9415163B2
.https://patents.google.com/patent/US9415163
18.
Schlein
,
M.
,
2017
, “
Insulin Formulation Characterization—The Thioflavin T Assays
,”
AAPS J.
,
19
(
2
), pp.
397
408
.
19.
Xue
,
C.
,
Lin
,
T. Y.
,
Chang
,
D.
, and
Guo
,
Z.
,
2017
, “
Thioflavin T as an Amyloid Dye: Fibril Quantification, Optimal Concentration and Effect on Aggregation
,”
R. Soc. Open Sci.
,
4
(
1
), p.
160696
.
20.
Bratlie
,
K. M.
,
York
,
R. L.
,
Invernale
,
M. A.
,
Langer
,
R.
, and
Anderson
,
D. G.
,
2012
, “
Materials for Diabetes Therapeutics
,”
Adv. Healthcare Mater.
,
1
(
3
), pp.
267
284
.
21.
Nielsen
,
L.
,
Khurana
,
R.
,
Coats
,
A.
,
Frokjaer
,
S.
,
Brange
,
J.
,
Vyas
,
S.
,
Uversky
,
V. N.
, and
Fink
,
A. L.
,
2001
, “
Effect of Environmental Factors on the Kinetics of Insulin Fibril Formation: Elucidation of the Molecular Mechanism
,”
Biochemistry
,
40
(
20
), pp.
6036
6046
.
22.
Malik
,
R.
, and
Roy
,
I.
,
2011
, “
Probing the Mechanism of Insulin Aggregation During Agitation
,”
Int. J. Pharm.
,
413
(
1–2
), pp.
73
80
.
23.
Li
,
S.
, and
Leblanc
,
R. M.
,
2013
, “
Aggregation of Insulin at the Interface
,”
J. Phys. Chem. B
,
118
(
5
), pp.
1181
1188
.
24.
Schaepelynck
,
P.
,
Riveline
,
J. P.
,
Renard
,
E.
,
Hanaire
,
H.
,
Guerci
,
B.
,
Baillot-Rudoni
,
S.
,
Sola-Gazzagnes
,
A.
,
Catargi
,
B.
,
Fontaine
,
P.
,
Millot
,
L.
,
Martin
,
J. F.
,
Tachouaft
,
H.
, and
Jeandidier
,
N.
,
2014
, “
Assessment of a New Insulin Preparation for Implanted Pumps Used in the Treatment of Type 1 Diabetes
,”
Diabetes Technol. Ther.
,
16
(
9
), pp.
582
589
.
25.
Feingold
,
V.
,
Jenkins
,
A.
, and
Kraegen
,
E.
,
1984
, “
Effect of Contact Material on Vibration-Induced Insulin Aggregation
,”
Diabetologia
,
27
(
3
), pp.
373
378
.
26.
Melberg
,
S. G.
,
Havelund
,
S.
,
Villumsen
,
J.
, and
Brange
,
J.
,
1988
, “
Insulin Compatibility With Polymer Materials Used in External Pump Infusion Systems
,”
Diabetic Med.
,
5
(
3
), pp.
243
247
.
27.
Liu
,
W.
,
Johnson
,
S.
,
Micic
,
M.
,
Orbulescu
,
J.
,
Whyte
,
J.
,
Garcia
,
A. R.
, and
Leblanc
,
R. M.
,
2012
, “
Study of the Aggregation of Human Insulin Langmuir Monolayer
,”
Langmuir
,
28
(
7
), pp.
3369
3377
.
28.
Sluzky
,
V.
,
Tamada
,
J. A.
,
Klibanov
,
A. M.
, and
Langer
,
R.
,
1991
, “
Kinetics of Insulin Aggregation in Aqueous Solutions Upon Agitation in the Presence of Hydrophobic Surfaces
,”
Proc. Natl. Acad. Sci.
,
88
(
21
), pp.
9377
9381
.
29.
Nayak
,
A.
,
Dutta
,
A. K.
, and
Belfort
,
G.
,
2008
, “
Surface-Enhanced Nucleation of Insulin Amyloid Fibrillation
,”
Biochem. Biophys. Res. Commun.
,
369
(
2
), pp.
303
307
.
30.
Pandey
,
L. M.
,
Le Denmat
,
S.
,
Delabouglise
,
D.
,
Bruckert
,
F.
,
Pattanayek
,
S. K.
, and
Weidenhaupt
,
M.
,
2012
, “
Surface Chemistry at the Nanometer Scale Influences Insulin Aggregation
,”
Colloids Surf. B: Biointerfaces
,
100
, pp.
69
76
.
31.
De Gennes
,
P. G.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
(
3
), p.
827
.
32.
Gadelmawla
,
E.
,
Koura
,
M.
,
Maksoud
,
T.
,
Elewa
,
I.
, and
Soliman
,
H.
,
2002
, “
Roughness Parameters
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
133
145
.
33.
Mahler
,
H. C.
,
Friess
,
W.
,
Grauschopf
,
U.
, and
Kiese
,
S.
,
2009
, “
Protein Aggregation: Pathways, Induction Factors and Analysis
,”
J. Pharm. Sci.
,
98
(
9
), pp.
2909
2934
.
34.
Owczarz
,
M.
, and
Arosio
,
P.
,
2014
, “
Sulfate Anion Delays the Self-Assembly of Human Insulin by Modifying the Aggregation Pathway
,”
Biophys. J.
,
107
(
1
), pp.
197
207
.
35.
Kwon
,
Y. M.
,
Baudys
,
M.
,
Knutson
,
K.
, and
Kim
,
S. W.
,
2001
, “
In Situ Study of Insulin Aggregation Induced by Water-Organic Solvent Interface
,”
Pharm. Res.
,
18
(
12
), pp.
1754
1759
.
36.
Roche
,
2018
, “
The Accu-Chek DiaPort System
,” Roche Diabetes Care GmbH, Mannheim, Germany, accessed Jan. 12, 2019, http://www.accu-chek.de/produkte/de/insulinpumpentherapie/diaport/index.jsp
37.
Blanchard
,
D.
,
Ligrani
,
P.
, and
Gale
,
B.
,
2005
, “
Performance and Development of a Miniature Rotary Shaft Pump
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
752
760
.
38.
Darby
,
S. G.
,
Moore
,
M. R.
,
Friedlander
,
T. A.
,
Schaffer
,
D. K.
,
Reiserer
,
R. S.
,
Wikswo
,
J. P.
, and
Seale
,
K. T.
,
2010
, “
A Metering Rotary Nanopump for Microfluidic Systems
,”
Lab Chip
,
10
(
23
), pp.
3218
3226
.
39.
Döpper
,
J.
,
Clemens
,
M.
,
Ehrfeld
,
W.
,
Jung
,
S.
,
Kaemper
,
K.
, and
Lehr
,
H.
,
1997
, “
Micro Gear Pumps for Dosing of Viscous Fluids
,”
J. Micromech. Microeng.
,
7
(
3
), p.
230
.
40.
Matteucci
,
M.
,
Perennes
,
F.
,
Marmiroli
,
B.
,
Miotti
,
P.
,
Vaccari
,
L.
,
Gosparini
,
A.
,
Turchet
,
A.
, and
Di Fabrizio
,
E.
,
2006
, “
Compact Micropumping System Based on LIGA Fabricated Microparts
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1288
1290
.
41.
Karassik
,
I. J.
,
Messina
,
J. P.
,
Cooper
,
P.
, and
Heald
,
C.
,
1986
,
Pump Handbook
,
McGraw-Hill
,
New York
.
42.
Bellanger
,
H.
,
Darmanin
,
T.
,
Taffin de Givenchy
,
E.
, and
Guittard
,
F.
,
2014
, “
Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories
,”
Chem. Rev.
,
114
(
5
), pp.
2694
2716
.
43.
Celia
,
E.
,
Darmanin
,
T.
,
de Givenchy
,
E. T.
,
Amigoni
,
S.
, and
Guittard
,
F.
,
2013
, “
Recent Advances in Designing Superhydrophobic Surfaces
,”
J. Colloid Interface Sci.
,
402
, pp.
1
18
.
44.
Wenzel
,
R. N.
,
1949
, “
Surface Roughness and Contact Angle
,”
J. Phys. Chem.
,
53
(
9
), pp.
1466
1467
.
You do not currently have access to this content.