Pin-jointed wrist mechanisms provide compact articulation for surgical robotic applications, but are difficult to miniaturize at scales suitable for small body cavity surgery. Solid surface cable guide channels, which eliminate the need for pulleys and reduce overall length to facilitate miniaturization, were developed within a three-degree-of-freedom cable-driven pin-jointed wrist mechanism. A prototype was 3D printed in steel at 5 mm diameter. Friction generated by the guide channels was experimentally tested to determine increases in cable tension during constant cable velocity conditions. Cable tension increased exponentially from 0 to 37% when the wrist pitched from 0 deg to 90 deg. The shape of the guide channel groove and angle, where the cable exits the channel impacts the magnitude of cable tension. A spring tensioning and cam actuation mechanism were developed to account for changing cable circuit path lengths during wrist pitch. This work shows that pulley-free cable wrist mechanisms can facilitate miniaturization below current feasible sizes while retaining compact articulation at the expense of increases in friction under constant cable velocity conditions.

References

References
1.
Selber
,
J. C.
,
Sarhane
,
K. A.
,
Ibrahim
,
A. E.
, and
Holsinger
,
F. C.
,
2014
, “
Transoral Robotic Reconstructive Surgery
,”
Semin. Plast. Surg.
,
28
(
1
), pp.
35
38
.
2.
Leonardis
,
R. L.
,
Duvvuri
,
U.
, and
Mehta
,
D.
,
2014
, “
Transoral Robotic-Assisted Laryngeal Cleft Repair in the Pediatric Patient
,”
Laryngoscope
,
124
(
9
), pp.
2167
2169
.
3.
Podolsky
,
D. J.
,
Fisher
,
D. M.
,
Wong Riff
,
K. W.
,
Looi
,
T.
,
Drake
,
J. M.
, and
Forrest
,
C. R.
,
2017
, “
Infant Robotic Cleft Palate Surgery: A Feasibility Assessment Using a Realistic Cleft Palate Simulator
,”
Plast. Reconstr. Surg.
,
139
(
2
), pp.
455e
465e
.
4.
Grames
,
C. L.
,
2015
, “
Design and Manufacture of Mesoscale Robot-Actuated Surgical Instruments
,” Master's thesis,
Brigham Young University
,
Provo, UT
.
5.
Jason Dearden
,
C. G.
,
Jensen
,
B. D.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2017
, “
Inverted L-Arm Gripper Compliant Mechanism
,”
ASME J. Med. Devices
,
11
(
3
), p.
034502
.
6.
Catherine
,
J.
,
Rotinat-Libersa
,
C.
, and
Micaelli
,
A.
,
2011
, “
Comparative Review of Endoscopic Devices Articulations Technologies Developed for Minimally Invasive Medical Procedures
,”
Appl. Bionics Biomech.
,
8
(
2
), pp.
151
171
.
7.
Jelinek
,
F.
,
Arkenbout
,
E. A.
,
Henselmans
,
P. W. J.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2015
, “
Classification of Joints Used in Steerable Instruments for Minimally Invasive Surgery—A Review of the State of the Art
,”
ASME J. Med. Devices
,
9
(1), p. 010801.
8.
Murphy
,
T. E. M.
, and
Nixon
,
M. M.
.,
2013
, “
Surgical Instrument Wrist
,” Intuitive Surgical Inc., Sunnyvale, CA, U. S. Patent No.
US8540748B2
.https://patents.google.com/patent/US20100004663
9.
Williams
,
M. R.
,
2014
, “
Instrument Wrist With Cycloidal Surfaces
,” U. S. Patent No.
US8887595B2
.https://patents.google.com/patent/US20110152879
10.
CSI
, 2006, “Design Guide for Cable Solutions,”
Sava Industries
,
Riverdale, NJ
, pp.
1
38
.
11.
van Poelgeest
,
A.
,
Kahler
,
G.
, and
Magdeburg
,
R.
,
2013
, “
The Future of Notes (Natural Orifice Translumenal Endoscopic Surgery) Technology
,”
Biomed Technol. (Berl).
(epub).
12.
Burbank
,
W. A.
,
2014
, “
Four-Cable Wrist With Solid Surface Cable Channels
,” Patent No. WO2010009221A2.
13.
Gao
,
X.
,
Wang
,
L.
, and
Hao
,
X.
,
2015
, “
An Improved Capstan Equation Including Power-Law Friction and Bending Rigidity for High Performance Yarn
,”
Mech. Mach. Theory
,
90
, pp.
84
94
.
14.
Podolsky
,
D. J.
,
Fisher
,
D. M.
,
Wong
,
K. W.
,
Looi
,
T.
,
Drake
,
J. M.
, and
Forrest
,
C. R.
,
2017
, “
Evaluation and Implementation of a High-Fidelity Cleft Palate Simulator
,”
Plast. Reconstr. Surg.
,
139
(
1
), pp.
85e
96e
.
15.
Rizos
,
D. D.
, and
Fassois
,
S. D.
,
2009
, “
Friction Identification Based Upon the LuGre and Maxwell Slip Models
,”
IEEE Trans. Control Syst. Technol.
,
17
(
1
), pp.
153
160
.
16.
Freidovich
,
L.
,
Robertsson
,
A.
,
Shiriaev
,
A.
, and
Johansson
,
R.
,
2010
, “
LuGre-Model-Based Friction Compensation
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
194
200
.
17.
Daniel Ludwigsen
,
K. S.
,
2009
, “
Choose Wisely: Static or Kinetic Friction-The Power of Dimensionless Plots
,”
Phys. Teach.
,
47
(
3
), pp.
158
161
.
18.
Kessler
,
G.
,
2009
, “
Comments on Static versus Kinetic Friction
,”
Phys. Teach.
,
47
(
6
), pp.
326
328
.
19.
Trejos
,
A. L.
,
Patel
,
R. V.
, and
Naish
,
M. D.
,
2010
, “
Force Sensing and Its Application in Minimally Invasive Surgery and Therapy: A Survey
,”
Proc. Inst. Mech. Eng. Eng.
,
224
(
7
), pp.
1435
1454
.
You do not currently have access to this content.