Mechanical circulatory support (MCS) options are limited for patients with dysfunctional single ventricle physiology. To address this unmet clinical need, we are developing an axial-flow blood pump to provide mechanical assistance to the cavopulmonary circulation. In this study, we investigate the use of high-resolution cardiac magnetic resonance imaging (MRI) to visualize the complex fluid flow conditions of mechanical circulatory assist in two patient-specific Fontan anatomies. A three-bladed axial-flow impeller coupled to a supportive cage with a four-bladed diffuser was positioned in the inferior vena cava (IVC) of each Fontan anatomy. Cardiac magnetic resonance (CMR) imaging and power efficiency studies were conducted at physiologic relevant parameters with cardiac outputs of 2, 3, and 4 L/min with impeller rotational speeds of 2000 and 4000 rpm. The axial-flow impeller was able to generate improved flow in the total cavopulmonary connection (TCPC). The higher rotational speed was able to redistribute flow in the TCPC anastomosis aiding in removing stagnant blood. No retrograde flow was observed or measured in the superior vena cava (SVC). As an extension of the CMR data, a scalar stress analysis was performed on both models and found a maximum scalar stress of approximately 42 Pa for both patient anatomies. The power efficiency experiments demonstrated a maximum energy gain of 8.6 mW for TCPC Anatomy 1 and 12.58 mW for TCPC Anatomy 2 for a flow rate of 4 L/min and at 4000 rpm. These findings support the continued development of axial blood pumps for mechanical cavopulmonary assist.

References

References
1.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
de Ferranti
,
S.
,
Despres
,
J. P.
,
Fullerton
,
H. J.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Liu
,
S.
,
Mackey
,
R. H.
,
Matchar
,
D. B.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
, 3rd.
,
Moy
,
C. S.
,
Muntner
,
P.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Rodriguez
,
C. J.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Willey
,
J. Z.
,
Woo
,
D.
,
Yeh
,
R. W.
, and
Turner
,
M. B.
,
2015
, “
Heart Disease and Stroke Statistics–2015 Update: A Report From the American Heart Association
,”
Circulation
,
131
(
4
), pp.
e29
322
.
2.
Oster
,
M. E.
,
Kim
,
C. H.
,
Kusano
,
A. S.
,
Cragan
,
J. D.
,
Dressler
,
P.
,
Hales
,
A. R.
,
Mahle
,
W. T.
, and
Correa
,
A.
,
2014
, “
A Population-Based Study of the Association of Prenatal Diagnosis With Survival Rate for Infants With Congenital Heart Defects
,”
Am. J. Cardiol.
,
113
(
6
), pp.
1036
1040
.
3.
O'Leary
,
P. W.
,
2002
, “
Prevalence, Clinical Presentation and Natural History of Patients With Single Ventricle
,”
Prog. Pediatr. Cardiol.
,
16
(
1
), pp.
31
38
.
4.
Mondesert
,
B.
,
Marcotte
,
F.
,
Mongeon
,
F. P.
,
Dore
,
A.
,
Mercier
,
L. A.
,
Ibrahim
,
R.
,
Asgar
,
A.
,
Miro
,
J.
,
Poirier
,
N.
, and
Khairy
,
P.
,
2013
, “
Fontan Circulation: Success or Failure?
,”
Can. J. Cardiol.
,
29
(
7
), pp.
811
820
.
5.
Gewillig
,
M.
,
2005
, “
The Fontan Circulation
,”
Heart
,
91
(
6
), pp.
839
846
.
6.
Kreutzer
,
C.
,
Kreutzer
,
J.
, and
Kreutzer
,
G. O.
,
2013
, “
Reflections on Five Decades of the Fontan Kreutzer Procedure
,”
Front. Pediatr.
,
1
, p.
45
.
7.
Khairy
,
P.
,
Poirier
,
N.
, and
Mercier
,
L. A.
,
2007
, “
Univentricular Heart
,”
Circulation
,
115
(
6
), pp.
800
812
.
8.
Bove
,
E. L.
,
1998
, “
Current Status of Staged Reconstruction for Hypoplastic Left Heart Syndrome
,”
Pediatr. Cardiol.
,
19
(
4
), pp.
308
315
.
9.
d'Udekem
,
Y.
,
Iyengar
,
A. J.
,
Cochrane
,
A. D.
,
Grigg
,
L. E.
,
Ramsay
,
J. M.
,
Wheaton
,
G. R.
,
Penny
,
D. J.
, and
Brizard
,
C. P.
,
2007
, “
The Fontan Procedure: Contemporary Techniques Have Improved Long-Term Outcomes
,”
Circulation
,
116
(
11_suppl
), pp.
I157
I164
.
10.
Khairy
,
P.
,
Fernandes
,
S. M.
,
Mayer
,
J. E.
, Jr.
,
Triedman
,
J. K.
,
Walsh
,
E. P.
,
Lock
,
J. E.
, and
Landzberg
,
M. J.
,
2008
, “
Long-Term Survival, Modes of Death, and Predictors of Mortality in Patients With Fontan Surgery
,”
Circulation
,
117
(
1
), pp.
85
92
.
11.
de Leval
,
M. R.
, and
Deanfield
,
J. E.
,
2010
, “
Four Decades of Fontan Palliation
,”
Nat. Rev. Cardiol.
,
7
(
9
), pp.
520
527
.
12.
VanderPluym
,
C.
,
Urschel
,
S.
, and
Buchholz
,
H.
,
2013
, “
Advanced Therapies for Congenital Heart Disease: Ventricular Assist Devices and Heart Transplantation
,”
Can. J. Cardiol.
,
29
(
7
), pp.
796
802
.
13.
Irving
,
C.
,
Parry
,
G.
,
O'Sullivan
,
J.
,
Dark
,
J. H.
,
Kirk
,
R.
,
Crossland
,
D. S.
,
Chaudhari
,
M.
,
Griselli
,
M.
,
Hamilton
,
J. R.
, and
Hasan
,
A.
,
2010
, “
Cardiac Transplantation in Adults With Congenital Heart Disease
,”
Heart
,
96
(
15
), pp.
1217
1222
.
14.
Delmo-Walter
,
E. M.
, and
Hetzer
,
R.
,
2013
, “
Surgical Treatment Concepts for End-Stage Congenital Heart Diseases
,”
HSR Proc. Intensive Care Cardiovasc. Anesth.
,
5
(
2
), pp.
81
84
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722338/
15.
Weinstein
,
S.
,
Bello
,
R.
,
Pizarro
,
C.
,
Fynn-Thompson
,
F.
,
Kirklin
,
J.
,
Guleserian
,
K.
,
Woods
,
R.
,
Tjossem
,
C.
,
Kroslowitz
,
R.
,
Friedmann
,
P.
, and
Jaquiss
,
R.
,
2014
, “
The Use of the Berlin Heart EXCOR in Patients With Functional Single Ventricle
,”
J. Thorac. Cardiovasc. Surg.
,
147
(
2
), pp.
697
704
.
16.
Chopski
,
S. G.
,
Moskowitz
,
W. B.
,
Stevens
,
R. M.
, and
Throckmorton
,
A. L.
,
2017
, “
Mechanical Circulatory Support Devices for Pediatric Patients With Congenital Heart Disease
,”
Artif. Organs
,
41
(
1
), pp.
E1
E14
.
17.
de Leval
,
M. R.
,
1998
, “
The Fontan Circulation: What Have We Learned? What to Expect?
,”
Pediatr. Cardiol.
,
19
(
4
), pp.
316
320
.
18.
Chopski
,
S. G.
,
Rangus
,
O. M.
,
Downs
,
E. A.
,
Moskowitz
,
W. B.
, and
Throckmorton
,
A. L.
,
2015
, “
Three-Dimensional Laser Flow Measurements of a Patient-Specific Fontan Physiology With Mechanical Circulatory Assistance
,”
Artif. Organs
,
39
(
6
), pp.
E67
E78
.
19.
Markl
,
M.
,
Geiger
,
J.
,
Kilner
,
P. J.
,
Foll
,
D.
,
Stiller
,
B.
,
Beyersdorf
,
F.
,
Arnold
,
R.
, and
Frydrychowicz
,
A.
,
2011
, “
Time-Resolved Three-Dimensional Magnetic Resonance Velocity Mapping of Cardiovascular Flow Paths in Volunteers and Patients With Fontan Circulation
,”
Eur. J. Cardio-Thorac. Surg.
,
39
(
2
), pp.
206
212
.
20.
Be'eri
,
E.
,
Maier
,
S. E.
,
Landzberg
,
M. J.
,
Chung
,
T.
, and
Geva
,
T.
,
1998
, “
In Vivo Evaluation of Fontan Pathway Flow Dynamics by Multidimensional Phase-Velocity Magnetic Resonance Imaging
,”
Circulation
,
98
(
25
), pp.
2873
2882
.
21.
Sharma
,
S.
,
Ensley
,
A. E.
,
Hopkins
,
K.
,
Chatzimavroudis
,
G. P.
,
Healy
,
T. M.
,
Tam
,
V. K.
,
Kanter
,
K. R.
, and
Yoganathan
,
A. P.
,
2001
, “
In Vivo Flow Dynamics of the Total Cavopulmonary Connection From Three-Dimensional Multislice Magnetic Resonance Imaging
,”
Ann. Thorac. Surg.
,
71
(
3
), pp.
889
898
.
22.
Sundareswaran
,
K. S.
,
Haggerty
,
C. M.
,
de Zelicourt
,
D.
,
Dasi
,
L. P.
,
Pekkan
,
K.
,
Frakes
,
D. H.
,
Powell
,
A. J.
,
Kanter
,
K. R.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2012
, “
Visualization of Flow Structures in Fontan Patients Using 3-Dimensional Phase Contrast Magnetic Resonance Imaging
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
5
), pp.
1108
1116
.
23.
Stankovic
,
Z.
,
Allen
,
B. D.
,
Garcia
,
J.
,
Jarvis
,
K. B.
, and
Markl
,
M.
,
2014
, “
4D Flow Imaging With MRI
,”
Cardiovasc. Diagn. Ther.
,
4
(
2
), pp.
173
192
.
24.
Throckmorton
,
A. L.
,
Downs
,
E. A.
,
Hazelwood
,
J. A.
,
Monroe
,
J. O.
, and
Chopski
,
S. G.
,
2012
, “
Twisted Cardiovascular Cages for Intravascular Axial Flow Blood Pumps to Support the Fontan Physiology
,”
Int. J. Artif. Organs
,
35
(
5
), pp.
369
375
.
25.
Chopski
,
S. G.
,
Rangus
,
O. M.
,
Fox
,
C. S.
,
Moskowitz
,
W. B.
, and
Throckmorton
,
A. L.
,
2015
, “
Stereo-Particle Image Velocimetry Measurements of a Patient-Specific Fontan Physiology Utilizing Novel Pressure Augmentation Stents
,”
Artif. Organs
,
39
(
3
), pp.
228
236
.
26.
Chopski
,
S. G.
,
Rangus
,
O. M.
,
Moskowitz
,
W. B.
, and
Throckmorton
,
A. L.
,
2014
, “
Experimental Measurements of Energy Augmentation for Mechanical Circulatory Assistance in a Patient-Specific Fontan Model
,”
Artif. Organs
,
38
(
9
), pp.
791
799
.
27.
Downs
,
E. A.
,
Moskowitz
,
W. B.
, and
Throckmorton
,
A. L.
,
2012
, “
Steady Flow Analysis of Mechanical Cavopulmonary Assistance in MRI-Derived Patient-Specific Fontan Configurations
,”
Artif. Organs
,
36
(
11
), pp.
972
980
.
28.
Bludszuweit
,
C.
,
1995
, “
Three-Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump
,”
Artif. Organs
,
19
(
7
), pp.
590
596
.
29.
Brunette
,
J.
,
Mongrain
,
R.
,
Laurier
,
J.
,
Galaz
,
R.
, and
Tardif
,
J. C.
,
2008
, “
3D Flow Study in a Mildly Stenotic Coronary Artery Phantom Using a Whole Volume PIV Method
,”
Med. Eng. Phys.
,
30
(
9
), pp.
1193
1200
.
30.
Katritsis
,
D.
,
Kaiktsis
,
L.
,
Chaniotis
,
A.
,
Pantos
,
J.
,
Efstathopoulos
,
E. P.
, and
Marmarelis
,
V.
,
2007
, “
Wall Shear Stress: Theoretical Considerations and Methods of Measurement
,”
Prog. Cardiovasc. Dis.
,
49
(
5
), pp.
307
329
.
31.
Efstathopoulos
,
E. P.
,
Patatoukas
,
G.
,
Pantos
,
I.
,
Benekos
,
O.
,
Katritsis
,
D.
, and
Kelekis
,
N. L.
,
2008
, “
Wall Shear Stress Calculation in Ascending Aorta Using Phase Contrast Magnetic Resonance Imaging. Investigating Effective Ways to Calculate It in Clinical Practice
,”
Phys. Medica
,
24
(
4
), pp.
175
181
.
32.
Throckmorton
,
A. L.
,
Untaroiu
,
A.
,
Allaire
,
P. E.
,
Wood
,
H. G.
,
Lim
,
D. S.
,
McCulloch
,
M. A.
, and
Olsen
,
D. B.
,
2007
, “
Numerical Design and Experimental Hydraulic Testing of an Axial Flow Ventricular Assist Device for Infants and Children
,”
ASAIO J.
,
53
(
6
), pp.
754
761
.
33.
Ensley
,
A. E.
,
Lynch
,
P.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
,
1999
, “
Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study
,”
Ann. Thorac. Surg.
,
68
(
4
), pp.
1384
1390
.
34.
De Rita
,
F.
,
Hasan
,
A.
,
Haynes
,
S.
,
Crossland
,
D.
,
Kirk
,
R.
,
Ferguson
,
L.
,
Peng
,
E.
, and
Griselli
,
M.
,
2014
, “
Mechanical Cardiac Support in Children With Congenital Heart Disease With Intention to Bridge to Heart Transplantation
,”
Eur. J. Cardiothorac. Surg.
,
46
(4), pp. 656–662.
35.
Kanani
,
M.
, and
Hsia
,
T. Y.
,
2013
, “
Options for the Failing Ventricle in Pediatric Heart Disease
,”
Curr. Cardiol. Rep.
,
15
(
10
), p.
404
.
36.
Ensley
,
A. E.
,
Ramuzat
,
A.
,
Healy
,
T. M.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
,
Pettigrew
,
R.
, and
Yoganathan
,
A. P.
,
2000
, “
Fluid Mechanic Assessment of the Total Cavopulmonary Connection Using Magnetic Resonance Phase Velocity Mapping and Digital Particle Image Velocimetry
,”
Ann. Biomed. Eng.
,
28
(
10
), pp.
1172
1183
.
37.
Kitajima
,
H. D.
,
Sundareswaran
,
K. S.
,
Teisseyre
,
T. Z.
,
Astary
,
G. W.
,
Parks
,
W. J.
,
Skrinjar
,
O.
,
Oshinski
,
J. N.
, and
Yoganathan
,
A. P.
,
2008
, “
Comparison of Particle Image Velocimetry and Phase Contrast MRI in a Patient-Specific Extracardiac Total Cavopulmonary Connection
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041004
.
38.
KrishnankuttyRema
,
R.
,
Dasi
,
L. P.
,
Pekkan
,
K.
,
Sundareswaran
,
K.
,
Fogel
,
M.
,
Sharma
,
S.
,
Kanter
,
K.
,
Spray
,
T.
, and
Yoganathan
,
A. P.
,
2008
, “
Quantitative Analysis of Extracardiac Versus Intraatrial Fontan Anatomic Geometries
,”
Ann. Thorac. Surg.
,
85
(
3
), pp.
810
817
.
39.
Dasi
,
L. P.
,
Pekkan
,
K.
,
Katajima
,
H. D.
, and
Yoganathan
,
A. P.
,
2008
, “
Functional Analysis of Fontan Energy Dissipation
,”
J. Biomech.
,
41
(
10
), pp.
2246
2252
.
40.
Grigioni
,
M.
,
Amodeo
,
A.
,
Daniele
,
C.
,
D'avenio
,
G.
,
Formigari
,
R.
, and
Di Donato
,
R. M.
,
2000
, “
Particle Image Velocimetry Analysis of the Flow Field in the Total Cavopulmonary Connection
,”
Artif. Organs
,
24
(
12
), pp.
946
952
.
41.
Figliola
,
R.
,
Giardini
,
A.
,
Conover
,
T.
,
Camp
,
T.
,
Biglino
,
G.
,
Chiulli
,
J.
, and
Hsia
,
T.
,
2010
, “
In Vitro Simulation and Validation of the Circulation With Congenital Heart Defects
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
71
80
.
You do not currently have access to this content.