A fully implantable circulatory assistance device without external connection and lifetime energy supply can eliminate a significant source of morbidity and mortality for patients. Here, we present and discuss concept and preliminary results of an original project for a not-motorized, fully implantable circulatory assistance device. The not-motorized implantable circulatory assistance device (NICA) has been tested into a cardiac simulator that was conceived according to the FDA and ISO standards. The instrumentation incorporated to the cardiac simulator includes probes for the aortic pressure (AoP) proximally to the device, a temperature control system, and one electromagnetic flowmeter to acquire the flow rate (AoF) proximally to the device. A control software allows to modulate the drive parameters such as velocity, acceleration, number of revolutions, the stroke volume, and the heart rate. Experiments have been performed with three different circuit resistances: 2100 dyn s/cm5, 1400, and 700. The AoF increased in the assisted cycles: 71% at 2100 dyn s/cm5, 67% at 1400 dyn s/cm5, and 25% at 700 dyn s/cm5. NICA performs a partial but significant support of AoF without energy supply. The improvement of AoF increases with the increasing of vascular resistances. The feedback received by this preliminary bench experiment acted as a preliminary proof of concept of this new device.

References

References
1.
Krabatsch
,
T.
,
Potapov
,
E.
,
Soltani
,
S.
,
Dandel
,
M.
,
Falk
,
V.
, and
Knosalla
,
C.
,
2015
, “
Ventricular Long-Term Support With Implantable Continuous Flow Pumps: On the Way to a Gold Standard in the Therapy of Terminal Heart Failure
,”
Herz
,
40
(
2
), pp.
231
239
.
2.
Kirklin
,
J. K.
,
Naftel
,
D. C.
,
Pagani
,
F. D.
,
Kormos
,
R. L.
,
Stevenson
,
L.
,
Miller
,
M.
, and
Young
,
J. B.
,
2012
, “
Long-Term Mechanical Circulatory Support (Destination Therapy): on Track to Compete With Heart Transplantation?
,”
J. Thorac. Cardiovasc. Surg.
,
144
(
3
), pp.
584
603
.
3.
Kamdar
,
F.
,
John
,
R.
,
Eckman
,
P.
,
Colvin-Adams
,
M.
,
Shumway
,
S. J.
, and
Liao
,
K.
,
2013
, “
Postcardiac Transplant Survival in the Current Era in Patients Receiving Continuous-Flow Left Ventricular Assist Devices
,”
J. Thorac. Cardiovasc. Surg.
,
145
(
2
), pp.
575
581
.
4.
Holman
,
W. L.
,
Naftel
,
D. C.
,
Eckert
,
C. E.
,
Kormos
,
R. L.
,
Goldstein
,
D. J.
, and
Kirklin
,
J. K.
,
2013
, “
Durability of Left Ventricular Assist Devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011
,”
J. Thorac. Cardiovasc. Surg.
,
146
(
2
), pp.
437
441
.
5.
Krabatsch
,
T.
,
Schweiger
,
M.
,
Stepanenko
,
A.
,
Drews
,
T.
,
Potapov
,
E.
,
Pasic
,
M.
,
Weng
,
Y.
,
Huebler
,
M.
, and
Hetzer
,
R.
,
2011
, “
Improvements in Implantable Mechanical Circulatory Support Systems: Literature Overview and Update
,”
Herz
,
36
(
7
), pp.
622
629
.
6.
Ujeyl
,
A.
, and
Krüger
,
M.
,
2015
, “
Rise Of the Machines? Left Ventricular Assist Devices for Treatment Of Severe Heart Failure
,”
Herz
,
40
(
7
), pp.
972
979
.
7.
Health Quality Ontario,
2004
, “
Left Ventricular Assist Devices: An Evidence-Based Analysis
,”
Ont. Health Technol. Assess. Ser.
,
4
(
3
), pp.
1
69
. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387736/
8.
Englberger
,
L.
,
Reineke
,
D. C.
,
Martinelli
,
M. V.
,
Mohacsi
,
P.
, and
Carrel
,
T. P.
,
2015
, “
Ventricular Assist Device—Possibilities of Long-Term Mechanical Circulatory Support
,”
Ther. Umsch.
,
72
(
8
), pp.
505
511
.
9.
Trainini
,
J.
,
Barisani
,
J. C.
,
Cabrera Fischer
,
E. I.
,
Chada
,
S.
,
Christen
,
A. I.
, and
Elencwajg
,
B.
,
1999
, “
Chronic Aortic Counterpulsation With Latissimus Dorsi in Heart Failure: Clinical Follow-Up
,”
J. Heart Lung Transplant.
,
18
(
11
), pp.
1120
1125
.
10.
Chachques
,
J. C.
,
Marino
,
J. P.
,
Lajos
,
P.
,
Zegdi
,
R.
,
D'Attellis
,
N.
,
Fornes
,
P.
,
Fabiani
,
J. N.
, and
Carpentier
,
A.
,
1997
, “
Dynamic Cardiomyoplasty: Clinical Follow-Up at 12 Years
,”
Eur. J. Cardiothorac. Surg.
,
12
(
4
), pp.
560
567
.
11.
EPO Patent Bibliographic Data
, 2017, “
Dispositif D'assistance Circulatoire Implantable Non Motorise
,” Barbieri Galdino, France, accessed Sept. 14, 2018 https://worldwide.espacenet.com/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20170421&CC=FR&NR=3042416A1&KC=A1
12.
American National Standard,
2010
, “
Cardiovascular Implants: Cardiac Valve Prostheses
,” Arlington: Association for the Advancement of Medical Instrumentation, American National Standard, Arlington, VA, Standard No.
ANSI/AAMI/ISO 5840:2005/(R)2010
.https://www.techstreet.com/standards/aami-iso-5840-2005-r-2010?product_id=1632846
13.
Chew
,
Y. T.
,
Chew
,
T. C.
,
Low
,
H. T.
, and
Lim
,
W. L.
,
2001
, “
Techniques in the Determination of the Flow Effectiveness of Prosthetic Heart Valves
,”
Cardiovascular Techniques: Biomechanical Systems - Techniques and Applications
,
C.
Leondes
, ed.,
CRC Press LLC
,
Washington, DC
, pp.
74
121
.
14.
Yoganathan
,
A. P.
,
Chandran
,
K. B.
, and
Sotiropoulos
,
F.
,
2005
, “
Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1689
1694
.
15.
Chemla
,
D.
,
Plamann
,
K.
, and
Nitenberg
,
A.
,
2008
, “
Towards New Indices of Arterial Stiffness Using Systolic Pulse Contour Analysis: A Theoretical Point of View
,”
J. Cardiovasc. Pharmacol.
,
51
(
2
), pp.
111
117
.
You do not currently have access to this content.