Efficient detection of pathogens is essential for the development of a reliable point-of-care diagnostic device. Magnetophoretic separation, a technique used in microfluidic platforms, utilizes magnetic microbeads (mMBs) coated with specific antigens to bind and remove targeted biomolecules using an external magnetic field. In order to assure reliability and accuracy in the device, the efficient capture of these mMBs is extremely important. The aim of this study was to analyze the effect of an electroosmotic flow (EOF) switching device on the capture efficiency (CE) of mMBs in a microfluidic device and demonstrate viability of bacteria capture. This analysis was performed at microbead concentrations of 2 × 106 beads/mL and 4 × 106 beads/mL, EOF voltages of 650 V and 750 V, and under constant flow and switching flow protocols. Images were taken using an inverted fluorescent microscope and the pixel count was analyzed to determine to fluorescent intensity. A capture zone was used to distinguish which beads were captured versus uncaptured. Under the steady-state flow protocol, CE was determined to range from 31% to 42%, while the switching flow protocol exhibited a CE of 71–85%. The relative percentage increase due to the utilization of the switching protocol was determined to be around two times the CE, with p < 0.05 for all cases. Initial testing using bacteria-bead complexes was also performed in which these complexes were captured under the constant flow protocol to create a calibration curve based on fluorescent pixel count. The calibration curve was linear on a log-log plot, with R2-value of 0.96. The significant increase in CE highlights the effectiveness of flow switching for magnetophoretic separation in microfluidic devices and prove its viability in bacterial analysis.

References

1.
Manz
,
A.
,
Graber
,
N.
, and
Widmer
,
H. Á.
,
1990
, “
Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing
,”
Sens. Actuators B: Chem.
,
1
(
1–6
), pp.
244
248
.
2.
Deisingh
,
A. K.
, and
Thompson
,
M.
,
2004
, “
Biosensors for the Detection of Bacteria
,”
Can. J. Microbiol.
,
50
(
2
), pp.
69
77
.
3.
McCloskey
,
K. E.
,
Chalmers
,
J. J.
, and
Zborowski
,
M.
,
2003
, “
Magnetic Cell Separation: Characterization of Magnetophoretic Mobility
,”
Anal. Chem.
,
75
(
24
), pp.
6868
6874
.
4.
Choi
,
J.-W.
,
2006
, “
Fabrication of Micromachined Magnetic Particle Separators for Bioseparation in Microfluidic Systems
,”
Microfluidic Techniques
(Methods In Molecular Biology™), Humana Press, New York, pp.
65
81
.
5.
Beyor
,
N.
,
Seo
,
T. S.
,
Liu
,
P.
, and
Mathies
,
R. A.
,
2008
, “
Immunomagnetic Bead-Based Cell Concentration Microdevice for Dilute Pathogen Detection
,”
Biomed. Microdevices
,
10
(
6
), pp.
909
917
.
6.
Kwon
,
Y.
,
Hara
,
C. A.
,
Knize
,
M. G.
,
Hwang
,
M. H.
,
Venkateswaran
,
K. S.
,
Wheeler
,
E. K.
,
Bell
,
P. M.
,
Renzi
,
R. F.
,
Fruetel
,
J. A.
, and
Bailey
,
C. G.
,
2008
, “
Magnetic Bead Based Immunoassay for Autonomous Detection of Toxins
,”
Anal. Chem.
,
80
(
22
), pp.
8416
8423
.
7.
Choi
,
J.-W.
,
Liakopoulos
,
T. M.
, and
Ahn
,
C. H.
,
2001
, “
An On-Chip Magnetic Bead Separator Using Spiral Electromagnets With Semi-Encapsulated Permalloy
,”
Biosens. Bioelectron.
,
16
(
6
), pp.
409
416
.
8.
Gijs
,
M. A.
,
2004
, “
Magnetic Bead Handling On-Chip: New Opportunities for Analytical Applications
,”
Microfluid. Nanofluid.
,
1
(1), pp.
22
40
.
9.
Guo
,
S.
,
Deng
,
Y.
,
Zhao
,
L.
,
Chan
,
H.
, and
Zhao
,
X.
,
2008
, “
Effect of Patterned Micro-Magnets on Superparamagnetic Beads in Microchannels
,”
J. Phys. D: Appl. Phys.
,
41
(
10
), p.
105008
.
10.
Thompson
,
J. A.
,
Du
,
X.
,
Grogan
,
J. M.
,
Schrlau
,
M. G.
, and
Bau
,
H. H.
,
2010
, “
Polymeric Microbead Arrays for Microfluidic Applications
,”
J. Micromech. Microeng.
,
20
(
11
), p.
115017
.
11.
Ramadan
,
Q.
,
Poenar
,
D. P.
, and
Yu
,
C.
,
2009
, “
Customized Trapping of Magnetic Particles
,”
Microfluid. Nanofluid.
,
6
(
1
), pp.
53
62
.
12.
Munir
,
A.
,
Wang
,
J.
, and
Zhou
,
H.
,
2009
, “
Dynamics of Capturing Process of Multiple Magnetic Nanoparticles in a Flow Through Microfluidic Bioseparation System
,”
IET Nanobiotechnol.
,
3
(
3
), pp.
55
64
.
13.
Di Carlo
,
D.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
,
2007
, “
Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels
,”
Proc. Natl. Acad. Sci.
,
104
(
48
), pp.
18892
18897
.
14.
Zhang
,
Z.
,
Xu
,
J.
,
Hong
,
B.
, and
Chen
,
X.
,
2014
, “
The Effects of 3D Channel Geometry on CTC Passing Pressure–Towards Deformability-Based Cancer Cell Separation
,”
Lab a Chip
,
14
(
14
), pp.
2576
2584
.
15.
Li
,
P.
,
Stratton
,
Z. S.
,
Dao
,
M.
,
Ritz
,
J.
, and
Huang
,
T. J.
,
2013
, “
Probing Circulating Tumor Cells in Microfluidics
,”
Lab a Chip
,
13
(
4
), pp.
602
609
.
16.
Hoshino
,
K.
,
Huang
,
Y.-Y.
,
Lane
,
N.
,
Huebschman
,
M.
,
Uhr
,
J. W.
,
Frenkel
,
E. P.
, and
Zhang
,
X.
,
2011
, “
Microchip-Based Immunomagnetic Detection of Circulating Tumor Cells
,”
Lab a Chip
,
11
(
20
), pp.
3449
3457
.
17.
Comandur
,
K. A.
,
Bhagat
,
A. A. S.
,
Dasgupta
,
S.
,
Papautsky
,
I.
, and
Banerjee
,
R. K.
,
2010
, “
Transport and Reaction of Nanoliter Samples in a Microfluidic Reactor Using Electro-Osmotic Flow
,”
J. Micromech. Microeng.
,
20
(
3
), p.
035017
.
18.
Al-Rjoub
,
M. F.
,
Roy
,
A. K.
,
Ganguli
,
S.
, and
Banerjee
,
R. K.
,
2012
, “
Enhanced Electro-Osmotic Flow Pump for Micro-Scale Heat Exchangers
,”
ASME
Paper No. MNHMT2012-75026.
19.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2011
, “
Thermal Transport and Performance Analysis of Pressure-and Electroosmotically-Driven Liquid Flow Microchannel Heat Sink With Wavy Wall
,”
Heat Mass Transfer
,
47
(
1
), pp.
93
105
.
20.
Das
,
D.
,
Al-Rjoub
,
M. F.
,
Heineman
,
W. R.
, and
Banerjee
,
R. K.
,
2016
, “
Efficient Capture of Magnetic Microbeads by Sequentially Switched Electroosmotic Flow—An Experimental Study
,”
J. Micromech. Microeng.
,
26
(
5
), p.
055013
.
21.
Dasgupta
,
S.
,
Bhagat
,
A. A. S.
,
Horner
,
M.
,
Papautsky
,
I.
, and
Banerjee
,
R. K.
,
2008
, “
Effects of Applied Electric Field and Microchannel Wetted Perimeter on Electroosmotic Velocity
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
185
192
.
You do not currently have access to this content.