Detection and capture of circulating tumor cells (CTCs) with microfluidic chips hold significance in cancer prognosis, diagnosis, and anti-cancer treatment. The counting of CTCs provides potential tools to evaluate cancer stages as well as treatment progress. However, facing the challenge of rareness in blood, the precise enumeration of CTCs is challenging. In the present research, we designed an inertial-deformability hybrid microfluidic chip using a long spiral channel with trapezoid-circular pillars and a capture zone. To clinically validate the device, the microfluidic chip has been tested for the whole blood and lysed blood with a small number of CTCs (colorectal and nonsmall-cell lung cancer) spiked in. The capture efficiency reaches over 90% for three types of cancer cell lines at the flow rate of 1.5 mL/h. Following numerical modeling was conducted to explain the working principle and working condition (Reynolds number below 10 and Dean number around 1). This design extended the effective capture length, improved the capture efficiency, and made the CTC enumeration much easier. We believe that this hybrid chip is promising clinically in the CTCs enumeration, evaluation of cancer therapy, and pharmacological responses.

References

References
1.
Pantel
,
K.
,
Brakenhoff
,
R. H.
, and
Brandt
,
B.
,
2008
, “
Detection, Clinical Relevance and Specific Biological Properties of Disseminating Tumour Cells
,”
Nat. Rev. Cancer
,
8
(
5
), p.
329
.
2.
Mehlen
,
P.
, and
Puisieux
,
A.
,
2006
, “
Metastasis: A Question of Life or Death
,”
Nat. Rev. Cancer
,
6
(
6
), p.
449
.
3.
Pantel
,
K.
, and
Alix-Panabières
,
C.
,
2010
, “
Circulating Tumour Cells in Cancer Patients: Challenges and Perspectives
,”
Trends Mol. Med.
,
16
(
9
), pp.
398
406
.
4.
Soltani
,
M.
, and
Chen
,
P.
,
2011
, “
Numerical Modeling of Fluid Flow in Solid Tumors
,”
PLoS One
,
6
(
6
), p.
e20344
.
5.
Soltani
,
M.
, and
Chen
,
P.
,
2013
, “
Numerical Modeling of Interstitial Fluid Flow Coupled With Blood Flow Through a Remodeled Solid Tumor Microvascular Network
,”
PLoS One
,
8
(
6
), p.
e67025
.
6.
Chen
,
H.
,
Cao
,
B.
,
Sun
,
B.
,
Cao
,
Y.
,
Yang
,
K.
,
Lin
,
Y.-S.
, and
Chen
,
H.
,
2017
, “
Highly-Sensitive Capture of Circulating Tumor Cells Using Micro-Ellipse Filters
,”
Sci. Rep.
,
7
(
1
), p.
610
.
7.
Fan
,
T.
,
Zhao
,
Q.
,
Chen
,
J. J.
,
Chen
,
W.-T.
, and
Pearl
,
M. L.
,
2009
, “
Clinical Significance of Circulating Tumor Cells Detected by an Invasion Assay in Peripheral Blood of Patients With Ovarian Cancer
,”
Gynecol. Oncol.
,
112
(
1
), pp.
185
191
.
8.
Hsiao
,
Y.-S.
,
Ho
,
B.-C.
,
Yan
,
H.-X.
,
Kuo
,
C.-W.
,
Chueh
,
D.-Y.
,
Yu
,
H.-h.
, and
Chen
,
P.
,
2015
, “
Integrated 3D Conducting Polymer-Based Bioelectronics for Capture and Release of Circulating Tumor Cells
,”
J. Mater. Chem. B
,
3
(
25
), pp.
5103
5110
.
9.
Sollier
,
E.
,
Go
,
D. E.
,
Che
,
J.
,
Gossett
,
D. R.
,
O'Byrne
,
S.
,
Weaver
,
W. M.
,
Kummer
,
N.
,
Rettig
,
M.
,
Goldman
,
J.
, and
Nickols
,
N.
,
2014
, “
Size-Selective Collection of Circulating Tumor Cells Using Vortex Technology
,”
Lab Chip
,
14
(
1
), pp.
63
77
.
10.
Attard
,
G.
,
Swennenhuis
,
J. F.
,
Olmos
,
D.
,
Reid
,
A. H.
,
Vickers
,
E.
,
A'Hern
,
R.
,
Levink
,
R.
,
Coumans
,
F.
,
Moreira
,
J.
, and
Riisnaes
,
R.
,
2009
, “
Characterization of ERG, AR and PTEN Gene Status in Circulating Tumor Cells From Patients With Castration-Resistant Prostate Cancer
,”
Cancer Res.
,
69
(
7
), pp.
2912
2918
.
11.
Nagrath
,
S.
,
Sequist
,
L. V.
,
Maheswaran
,
S.
,
Bell
,
D. W.
,
Irimia
,
D.
,
Ulkus
,
L.
,
Smith
,
M. R.
,
Kwak
,
E. L.
,
Digumarthy
,
S.
, and
Muzikansky
,
A.
,
2007
, “
Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology
,”
Nature
,
450
(
7173
), p.
1235
.
12.
Di Carlo
,
D.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
,
2007
, “
Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels
,”
Proc. Natl. Acad. Sci.
,
104
(
48
), pp.
18892
18897
.
13.
Li
,
P.
,
Mao
,
Z.
,
Peng
,
Z.
,
Zhou
,
L.
,
Chen
,
Y.
,
Huang
,
P.-H.
,
Truica
,
C. I.
,
Drabick
,
J. J.
,
El-Deiry
,
W. S.
, and
Dao
,
M.
,
2015
, “
Acoustic Separation of Circulating Tumor Cells
,”
Proc. Natl. Acad. Sci.
,
112
(
16
), pp.
4970
4975
.
14.
Zhang
,
Z.
,
Xu
,
J.
,
Hong
,
B.
, and
Chen
,
X.
,
2014
, “
The Effects of 3D Channel Geometry on CTC Passing Pressure–Towards Deformability-Based Cancer Cell Separation
,”
Lab Chip
,
14
(
14
), pp.
2576
2584
.
15.
Ahmmed
,
S. M.
,
Bithi
,
S. S.
,
Pore
,
A. A.
,
Mubtasim
,
N.
,
Schuster
,
C.
,
Gollahon
,
L. S.
, and
Vanapalli
,
S. A.
,
2018
, “
Multi-Sample Deformability Cytometry of Cancer Cells
,”
APL Bioeng.
,
2
(
3
), p.
032002
.
16.
Shi
,
W.
,
Wang
,
S.
,
Maarouf
,
A.
,
Uhl
,
C. G.
,
He
,
R.
,
Yunus
,
D.
, and
Liu
,
Y.
,
2017
, “
Magnetic Particles Assisted Capture and Release of Rare Circulating Tumor Cells Using Wavy-Herringbone Structured Microfluidic Devices
,”
Lab Chip
,
17
(
19
), pp.
3291
3299
.
17.
Liu
,
F.
,
KC
,
P.
,
Zhang
,
G.
, and
Zhe
,
J.
,
2015
, “
Microfluidic Magnetic Bead Assay for Cell Detection
,”
Anal. Chem.
,
88
(
1
), pp.
711
717
.
18.
Sarioglu
,
A. F.
,
Aceto
,
N.
,
Kojic
,
N.
,
Donaldson
,
M. C.
,
Zeinali
,
M.
,
Hamza
,
B.
,
Engstrom
,
A.
,
Zhu
,
H.
,
Sundaresan
,
T. K.
, and
Miyamoto
,
D. T.
,
2015
, “
A Microfluidic Device for Label-Free, Physical Capture of Circulating Tumor Cell Clusters
,”
Nat. Methods
,
12
(
7
), p.
685
.
19.
Gogoi
,
P.
,
Sepehri
,
S.
,
Zhou
,
Y.
,
Gorin
,
M. A.
,
Paolillo
,
C.
,
Capoluongo
,
E.
,
Gleason
,
K.
,
Payne
,
A.
,
Boniface
,
B.
, and
Cristofanilli
,
M.
,
2016
, “
Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs) From Clinical Blood Samples
,”
PLoS One
,
11
(
1
), p.
e0147400
.
20.
Tan
,
J.
,
Sohrabi
,
S.
,
He
,
R.
, and
Liu
,
Y.
,
2018
, “
Numerical Simulation of Cell Squeezing Through a Micropore by the Immersed Boundary Method
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
3
), pp.
502
514
.
21.
Mohamed
,
H.
,
Murray
,
M.
,
Turner
,
J. N.
, and
Caggana
,
M.
,
2009
, “
Isolation of Tumor Cells Using Size and Deformation
,”
J. Chromatogr. A
,
1216
(
47
), pp.
8289
8295
.
22.
Ahmmed
,
S. M.
,
Suteria
,
N. S.
,
Garbin
,
V.
, and
Vanapalli
,
S. A.
,
2018
, “
Hydrodynamic Mobility of Confined Polymeric Particles, Vesicles, and Cancer Cells in a Square Microchannel
,”
Biomicrofluidics
,
12
(
1
), p.
014114
.
23.
Lin
,
H. K.
,
Zheng
,
S.
,
Williams
,
A. J.
,
Balic
,
M.
,
Groshen
,
S.
,
Scher
,
H. I.
,
Fleisher
,
M.
,
Stadler
,
W.
,
Datar
,
R. H.
, and
Tai
,
Y.-C.
,
2010
, “
Portable Filter-Based Microdevice for Detection and Characterization of Circulating Tumor Cells
,”
Clin. Cancer Res.
,
16
(
20
), pp.
5011
5018
.
24.
Tan
,
S. J.
,
Yobas
,
L.
,
Lee
,
G. Y. H.
,
Ong
,
C. N.
, and
Lim
,
C. T.
,
2009
, “
Microdevice for the Isolation and Enumeration of Cancer Cells From Blood
,”
Biomed. Microdevices
,
11
(
4
), pp.
883
892
.
25.
Chung
,
J.
,
Issadore
,
D.
,
Ullal
,
A.
,
Lee
,
K.
,
Weissleder
,
R.
, and
Lee
,
H.
,
2013
, “
Rare Cell Isolation and Profiling on a Hybrid Magnetic/Size-Sorting Chip
,”
Biomicrofluidics
,
7
(
5
), p.
054107
.
26.
Hansson
,
J.
,
Karlsson
,
J. M.
,
Haraldsson
,
T.
,
Brismar
,
H.
,
van der Wijngaart
,
W.
, and
Russom
,
A.
,
2012
, “
Inertial Microfluidics in Parallel Channels for High-Throughput Applications
,”
Lab Chip
,
12
(
22
), pp.
4644
4650
.
27.
Di Carlo
,
D.
,
Edd
,
J. F.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
,
2008
, “
Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing
,”
Anal. Chem.
,
80
(
6
), pp.
2204
2211
.
28.
Bhagat
,
A. A. S.
,
Kuntaegowdanahalli
,
S. S.
, and
Papautsky
,
I.
,
2008
, “
Continuous Particle Separation in Spiral Microchannels Using Dean Flows and Differential Migration
,”
Lab Chip
,
8
(
11
), pp.
1906
1914
.
29.
Fang
,
Z.
,
Zhang
,
Z.
,
Chen
,
X.
, and
Xu
,
J.
,
2014
, “
Inertial Microfluidic Spiral CTCs Filter With Micropillars
,”
36th EMBS Special Topic Conference on Healthcare Innovation and Point-of-Care Technologies, Seattle
, WA, Oct. 8–10.
30.
Aghaamoo
,
M.
,
Zhang
,
Z.
,
Chen
,
X.
, and
Xu
,
J.
,
2015
, “
Deformability-Based Circulating Tumor Cell Separation With Conical-Shaped Microfilters: Concept, Optimization, and Design Criteria
,”
Biomicrofluidics
,
9
(
3
), p.
034106
.
31.
Zhang
,
Z.
,
Chen
,
X.
, and
Xu
,
J.
,
2015
, “
Entry Effects of Droplet in a Micro Confinement: Implications for Deformation-Based Circulating Tumor Cell Microfiltration
,”
Biomicrofluidics
,
9
(
2
), p.
024108
.
32.
Zhang
,
Z.
,
Drapaca
,
C.
,
Chen
,
X.
, and
Xu
,
J.
,
2017
, “
Droplet Squeezing Through a Narrow Constriction: Minimum Impulse and Critical Velocity
,”
Phys. Fluids
,
29
(
7
), p.
072102
.
33.
Luo
,
Z.
, and
Bai
,
B.
,
2017
, “
Off-Center Motion of a Trapped Elastic Capsule in a Microfluidic Channel With a Narrow Constriction
,”
Soft Matter
,
13
(
44
), pp.
8281
8292
.
34.
Bayat
,
P.
, and
Rezai
,
P.
,
2017
, “
Semi-Empirical Estimation of Dean Flow Velocity in Curved Microchannels
,”
Sci. Rep.
,
7
(
1
), p.
13655
.
You do not currently have access to this content.