Forward-viewing catheters and scopes for diagnosing disease and guiding interventions in small ducts (less than 3 mm diameter) require wide-field high-quality imaging since scope tip bending is difficult and ineffective. A high-fidelity electromechanically coupled finite element (FE) model of a piezoelectric actuated resonant fiber scanner is presented, which enables improvement on the general design of fiber-optic scanner geometry to increase scan frequency and field of view (FOV). Using the proposed model, parametric sweeps on the specific design variables achieved by acid etching of glass fiber are analyzed to identify their effect on scanner performance and to choose improved designs. The resulting complex fiber scanner design requires development of unique microfabrication techniques. Comparison of three model simulations and their experimental testing show that our proposed coupled model has prediction error of ≤12% with respect to experimental data, while other uncoupled models have up to 39% error. The model and microfabrication techniques presented in this paper have significance for fiber scanning-based systems in that they demonstrate reliability for model-driven design and also flexibility for fiber scanner design of complex geometries, allowing for improvement on medical imaging performance.

References

References
1.
Bourantas
,
C. V.
,
Jaffer
,
F. A.
,
Gijsen
,
F. J.
,
van Soest
,
G.
,
Madden
,
S. P.
,
Courtney
,
B. K.
,
Fard
,
A. M.
,
Tenekecloglu
,
E.
,
Zheng
,
Y.
,
van der Steen
,
A. F. W.
,
Emelianov
,
S.
,
Muller
,
J.
,
Stone
,
P. H.
,
Marcu
,
L.
,
Tearney
,
G. J.
, and
Serruys
,
P. W.
,
2017
, “
Hybrid Intravascular Imaging: Recent Advances, Technical Considerations, and Current Applications in the Study of Plaque Pathophysiology
,”
Eur. Heart J.
,
38
(
6
), pp.
400
412
.
2.
McVeigh
,
P. Z.
,
Sacho
,
R.
,
Pereira
,
V. M.
,
Seibel
,
E. J.
,
Wilson
,
B. C.
, and
Krings
,
T.
,
2014
, “
High Resolution Angioscopic Imaging During Endovascular Neurosurgery
,”
Neurosurgery
,
75
(
2
), pp.
171
180
.
3.
National Center for Health Statistics,
2016
, “
Leading Causes of Death
,” National Center for Health Statistics, Hyattsville, MD, accessed Jan. 13, 2018, https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
4.
Lee
,
C. M.
,
Engelbrecht
,
C. J.
,
Soper
,
T. D.
,
Helmchen
,
F.
, and
Seibel
,
E. J.
,
2010
, “
Scanning Fiber Endoscopy With Highly Flexible, 1-Mm Catheterscopes for Wide-Field, Full-Color Imaging
,”
J. Biophotonics
,
3
(
5–6
), pp.
385
407
.
5.
Savastano
,
L. E.
,
Zhou
,
Q.
,
Smith
,
A.
,
Vega
,
K.
,
Murga-Zamalloa
,
C.
,
Gordon
,
D.
,
McHugh
,
J.
,
Zhao
,
L.
,
Wang
,
M. M.
,
Pandey
,
A.
,
Thompson
,
B. G.
,
Xu
,
J.
,
Zhang
,
J.
,
Chen
,
Y. E.
,
Seibel
,
E. J.
, and
Wang
,
T. D.
,
2017
, “
Multimodal Laser-Based Angioscopy for Structural, Chemical, and Biological Imaging of Atherosclerosis
,”
Nat. Biomed. Eng.
,
1
, p.
0023
.
6.
Duma
,
V. F.
,
Tankam
,
P.
,
Huang
,
J.
,
Won
,
J.
, and
Rolland
,
J. P.
,
2015
, “
Optimization of Galvanometer Scanning for Optical Coherence Tomography
,”
Appl. Opt.
,
54
(
17
), pp.
5495
5507
.
7.
Yeoh
,
I. L.
,
Reinhall
,
P. G.
,
Berg
,
M. C.
,
Chizeck
,
H. J.
, and
Seibel
,
E. J.
,
2016
, “
Electro-Mechanical Modeling and Adaptive Feedforward Control of a Self-Sensing Scanning Fiber Endoscope
,”
ASME J. Dyn. Syst., Meas., Contr.
,
138
(
10
), p.
101006
.
8.
Yeoh
,
I. L.
,
Reinhall
,
P. G.
,
Berg
,
M. C.
, and
Seibel
,
E. J.
,
2015
, “
Self-Contained Image Recalibration in a Scanning Fiber Endoscope Using Piezoelectric Sensing
,”
ASME J. Med. Devices
,
9
(
1
), p.
011004
.
9.
Torry-Smith
,
J. M.
,
Qamar
,
A.
,
Achiche
,
S.
,
Wikander
,
J.
,
Mortensen
,
N. H.
, and
During
,
C.
,
2013
, “
Challenges in Designing Mechatronic Systems
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011005
.
10.
Mohebbi
,
A.
,
Baron
,
L.
,
Achiche
,
S.
, and
Birglen
,
L.
,
2014
, “
Trends in Concurrent, Multi-Criteria and Optimal Design of Mechatronic Systems: A Review
,”
International Conference on Innovative Design and Manufacturing
(
ICIDM
), Montreal, QC, Canada, Aug. 13–15, pp.
88
93
.
11.
Kundrat
,
M. J.
,
Reinhall
,
P. G.
,
Lee
,
C. M.
, and
Seibel
,
E. J.
,
2011
, “
High Performance Open Loop Control of Scanning With a Small Cylindrical Cantilever Beam
,”
J. Sound Vib.
,
330
(
8
), pp.
1762
1771
.
12.
Brown
,
C. M.
,
Reinhall
,
P. G.
,
Karasawa
,
S.
, and
Seibel
,
E. J.
,
2006
, “
Optomechanical Design and Fabrication of Resonant Microscanners for a Scanning Fiber Endoscope
,”
Opt. Eng.
,
45
(
4
), p.
043001
.
13.
Smithwick
,
Q. J.
,
Reinhall
,
P. G.
,
Vagners
,
J.
, and
Seibel
,
E. J.
,
2004
, “
Nonlinear State-Space Model of a Resonating Single Fiber Scanner for Tracking Control: Theory and Experiment
,”
ASME J. Dyn. Sys., Meas., Contr.
,
126
(
1
), pp.
88
101
.
14.
Li
,
Z.
,
Yang
,
Z.
, and
Fu
,
L.
,
2011
, “
Scanning Properties of a Resonant Fiber-Optic Piezoelectric Scanner
,”
Rev. Sci. Instrum.
,
82
(
12
), p.
123707
.
15.
IEEE
,
1988
, “
IEEE Standard on Piezoelectricity
,” Institute of Electrical and Electronics Engineers, Inc., New York, Standard No. 176-1987.
16.
Landau
,
L. D.
,
Pitaevskii
,
L. P.
,
Kosevich
,
A. M.
, and
Lifshitz
,
E. M.
,
1970
,
Theory of Elasticity
. Butterworth & Heinemann,
Heinemann
,
Oxford, UK
.
17.
Yang
,
Y. T.
,
Heh
,
D.
,
Wei
,
P. K.
,
Fann
,
W. S.
,
Gray
,
M. H.
, and
Hsu
,
J. W. P.
,
1997
, “
Vibration Dynamics of Tapered Optical Fiber Probes
,”
J. Appl. Phys.
,
81
(
4
), pp.
1623
1627
.
18.
Fauver
,
M.
,
Crossman-Bosworth
,
J. L.
, and
Seibel
,
E. J.
,
2002
, “
Microfabrication of Fiber Optic Scanners
,”
Proc. SPIE
,
4773
, p.
469190
.
19.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. W.
,
1982
,
Fundamentals of Acoustics
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.