Pulsatile waves of blood pressure and flow are continuously augmented by the resistance, compliance, and inertance properties of the vasculature, resulting in unique wave characteristics at distinct anatomical locations. Hemodynamically generated loads, transduced as physical signals into resident vascular cells, are crucial to the maintenance and preservation of a healthy vascular physiology; thus, failure to recreate biomimetic loading in vitro can lead to pathological gene expression and aberrant remodeling. As a generalized approach to improve native and engineered blood vessels, we have designed, built, and tested a pulsatile perfusion bioreactor based on biomimetic impedances and a novel five-element electrohydraulic analog. Here, the elements of an incubator-based culture system were formulaically designed to match the vascular impedance of a brachial artery by incorporating both the inherent (systemic) and added elements of the physical system into the theoretical approach. Freshly harvested porcine saphenous veins were perfused within a physiological culture chamber for 6 h and the relative expression of seven known mechanically sensitive remodeling genes analyzed using the quantitative polymerase chain reaction (qPCR) method. Of these, we found plasminogen activator inhibitor-1 (SERPINE1) and fibronectin-1 (FN1) to be highly sensitive to differences between arterial- and venous-like culture conditions. The analytical approach and biological confirmation provide a framework toward the general design of long-term hemodynamic-mimetic vascular culture systems.

References

References
1.
Mills
,
C. J.
,
Gabe
,
I. T.
,
Gault
,
J. H.
,
Mason
,
D. T.
,
Ross
,
J.
, Jr.
,
Braunwald
,
E.
, and
Shillingford
,
J. P.
,
1970
, “
Blood Velocity and Pressure Wave-Forms in the Major Arteries in Man
,”
Clin. Sci.
,
38
(
2
), p.
10P
.
2.
O'Rourke
,
M. F.
,
1982
, “
Vascular Impedance in Studies of Arterial and Cardiac Function
,”
Physiol. Rev.
,
62
(
2
), pp.
570
623
.
3.
London
,
G. M.
, and
Guerin
,
A. P.
,
1999
, “
Influence of Arterial Pulse and Reflected Waves on Blood Pressure and Cardiac Function
,”
Am Hear. J.
,
138
(
3 Pt. 2
), pp.
220
224
.
4.
Cox
,
R. H.
,
1978
, “
Passive Mechanics and Connective Tissue Composition of Canine Arteries
,”
Am. J. Physiol.
,
234
(
5
), pp.
H533
H541
.
5.
Faury
,
G.
,
2001
, “
Function-Structure Relationship of Elastic Arteries in Evolution: From Microfibrils to Elastin and Elastic Fibres
,”
Pathol. Biol.
,
49
(
4
), pp.
310
325
.
6.
Prim
,
D. A.
,
Zhou
,
B.
,
Hartstone-Rose
,
A.
,
Uline
,
M. J.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2016
, “
A Mechanical Argument for the Differential Performance of Coronary Artery Grafts
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
93
105
.
7.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.
8.
Voisard
,
R.
,
Ramiz
,
E.
,
Baur
,
R.
,
Gastrock-Balitsch
,
I.
,
Siebeneich
,
H.
,
Frank
,
O.
,
Hombach
,
V.
,
Hannekum
,
A.
, and
Schumacher
,
B.
,
2010
, “
Pulsed Perfusion in a Venous Human Organ Culture Model With a Windkessel Function (Pulsed Perfusion Venous HOC-Model)
,”
Med. Sci. Monit.
,
16
(
11
), pp.
Cr523
Cr529
.https://www.medscimonit.com/download/index/idArt/881216
9.
Piola
,
M.
,
Prandi
,
F.
,
Bono
,
N.
,
Soncini
,
M.
,
Penza
,
E.
,
Agrifoglio
,
M.
,
Polvani
,
G.
,
Pesce
,
M.
, and
Fiore
,
G. B.
,
2013
, “
A Compact and Automated Ex Vivo Vessel Culture System for the Pulsatile Pressure Conditioning of Human Saphenous Veins
,”
J. Tissue Eng. Regen. Med.
,
10
(3), pp. E204–E215.
10.
Gleason
,
R. L.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2007
, “
Biaxial Biomechanical Adaptations of Mouse Carotid Arteries Cultured at Altered Axial Extension
,”
J. Biomech.
,
40
(
4
), pp.
766
776
.
11.
Matsumoto
,
T.
,
Okumura
,
E.
,
Miura
,
Y.
, and
Sato
,
M.
,
1999
, “
Mechanical and Dimensional Adaptation of Rabbit Carotid Artery Cultured In Vitro
,”
Med. Biol. Eng. Comput.
,
37
(
2
), pp.
252
256
.
12.
Gusic
,
R. J.
,
Myung
,
R.
,
Petko
,
M.
,
Gaynor
,
J. W.
, and
Gooch
,
K. J.
,
2005
, “
Shear Stress and Pressure Modulate Saphenous Vein Remodeling Ex Vivo
,”
J. Biomech.
,
38
(
9
), pp.
1760
1769
.
13.
Saucy
,
F.
,
Probst
,
H.
,
Alonso
,
F.
,
Berard
,
X.
,
Deglise
,
S.
,
Dunoyer-Geindre
,
S.
,
Mazzolai
,
L.
,
Kruithof
,
E.
,
Haefliger
,
J. A.
, and
Corpataux
,
J. M.
,
2010
, “
Ex Vivo Pulsatile Perfusion of Human Saphenous Veins Induces Intimal Hyperplasia and Increased Levels of the Plasminogen Activator Inhibitor 1
,”
Eur. Surg. Res.
,
45
(
1
), pp.
50
59
.
14.
Muluk
,
S. C.
,
Vorp
,
D. A.
,
Severyn
,
D. A.
,
Gleixner
,
S.
,
Johnson
,
P. C.
, and
Webster
,
M. W.
,
1998
, “
Enhancement of Tissue Factor Expression by Vein Segments Exposed to Coronary Arterial Hemodynamics
,”
J. Vasc. Surg.
,
27
(
3
), pp.
521
527
.
15.
Piola
,
M.
,
Ruiter
,
M.
,
Vismara
,
R.
,
Mastrullo
,
V.
,
Agrifoglio
,
M.
,
Zanobini
,
M.
,
Pesce
,
M.
,
Soncini
,
M.
, and
Fiore
,
G. B.
,
2017
, “
Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
884
897
.
16.
Stegemann
,
J. P.
, and
Nerem
,
R. M.
,
2003
, “
Phenotype Modulation in Vascular Tissue Engineering Using Biochemical and Mechanical Stimulation
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
391
402
.
17.
Yamada
,
K. M.
, and
Cukierman
,
E.
,
2007
, “
Modeling Tissue Morphogenesis and Cancer in 3D
,”
Cell
,
130
(
4
), pp.
601
610
.
18.
Freshney
,
R. I.
,
2010
,
Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications
,
Wiley-Blackwell
,
Hoboken, NJ
.
19.
Yoshigi
,
M.
,
Knott
,
G. D.
, and
Keller
,
B. B.
,
2000
, “
Lumped Parameter Estimation for the Embryonic Chick Vascular System: A Time-Domain Approach Using MLAB
,”
Comput. Methods Programs Biomed.
,
63
(
1
), pp.
29
41
.
20.
Westerhof
,
N.
,
Elzinga
,
G.
, and
Sipkema
,
P.
,
1971
, “
An Artificial Arterial System for Pumping Hearts
,”
J. Appl. Physiol.
,
31
(
5
), pp.
776
781
.
21.
McDonald
,
D. A.
,
1974
,
Blood Flow in Arteries
,
Edward Arnold
,
London
.
22.
Patel
,
D. J.
,
Defreitas
,
F. M.
, and
Fry
,
D. L.
,
1963
, “
Hydraulic Input Impedance to Aorta and Pulmonary Artery in Dogs
,”
J. Appl. Physiol.
,
18
, pp.
134
40
.
23.
Yoshigi
,
M.
, and
Keller
,
B. B.
,
1997
, “
Characterization of Embryonic Aortic Impedance With Lumped Parameter Models
,”
Am. Physiol. Soc.
,
273
(
1 Pt. 2
), pp.
H19
H27
.http://www.physiology.org/doi/10.1152/ajpheart.1997.273.1.H19
24.
Grant
,
J. B.
,
Char
,
L. J. P.
,
Grant
,
B. J.
, and
Paradowski
,
L. J.
,
1987
, “
Characterization of Pulmonary Arterial Input Impedance With Lumped Parameter Models
,”
Am. Physiol. Soc.
,
252
(
3
), pp.
585
593
.
25.
Jager
,
G. N.
,
Westerhof
,
N.
, and
Noordergraaf
,
A.
,
1965
, “
Oscillatory Flow Impedance in Electrical Analog of Arterial System:: Representation of Sleeve Effect and Non-Newtonian Properties of Blood
,”
Circ. Res.
,
16
(
2
), pp.
121
133
.
26.
Stergiopulos
,
N.
,
Westerhof
,
B. E.
, and
Westerhof
,
N.
,
1999
, “
Total Arterial Inertance as the Fourth Element of the Windkessel Model
,”
Am. J. Physiol.
,
276
(
1 Pt. 2
), pp.
H81
H88
.
27.
Gault
,
J. H.
,
Ross
,
J.
, and
Mason
,
D. T.
,
1966
, “
Patterns of Brachial Arterial Blood Flow in Conscious Human Subjects With and Without Cardiac Dysfunction
,”
Circulation
,
34
(
5
), pp.
833
848
.
28.
Berne
,
R. M.
, and
Levy
,
M. N.
,
2001
,
Cardiovascular Physiology
,
Mosby
,
St. Louis, MO
.
29.
Abraham
,
P.
,
Leftheriotis
,
G.
,
Desvaux
,
B.
,
Saumet
,
M.
, and
Saumet
,
L.
,
1994
, “
Diameter and Blood Velocity Changes in the Saphenous Vein During Thermal Stress
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
69
(
4
), pp.
305
308
.
30.
Piola
,
M.
,
Prandi
,
F.
,
Fiore
,
G. B.
,
Agrifoglio
,
M.
,
Polvani
,
G.
,
Pesce
,
M.
, and
Soncini
,
M.
,
2016
, “
Human Saphenous Vein Response to Trans-Wall Oxygen Gradients in a Novel Ex Vivo Conditioning Platform
,”
Ann. Biomed. Eng.
,
44
(
5
), pp.
1449
1461
.
31.
Piola
,
M.
,
Vismara
,
R.
,
Tasca
,
G.
,
Lucherini
,
F.
,
Redaelli
,
P.
,
Soncini
,
M.
,
Romagnoni
,
C.
,
Mangini
,
A.
,
Antona
,
C.
, and
Fiore
,
G. B.
,
2016
, “
Design of a Simple Coronary Impedance Simulator for the In Vitro Study of the Complex Coronary Hemodynamics
,”
Physiol. Meas.
,
37
(
12
), p.
2274
.
32.
Smith
,
J. O.
,
2007
,
Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications
, W3K Publishing, Stanford, CA.
33.
Newby
,
A. C.
, and
Zaltsman
,
A. B.
,
2000
, “
Molecular Mechanisms in Intimal Hyperplasia
,”
J. Pathol.
,
190
(
3
), pp.
300
309
.
34.
Intengan
,
H. D.
, and
Schiffrin
,
E. L.
,
2001
, “
Vascular Remodeling in Hypertension
,”
Hypertension
,
38
(
3 Pt. 2
), pp.
581
587
.
35.
Galis
,
Z. S.
, and
Khatri
,
J. J.
,
2002
, “
Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis: The Good, the Bad, and the Ugly
,”
Circ. Res.
,
90
(
3
), pp.
251
262
.
36.
Azhar
,
M.
,
Schultz
,
J. E. J.
,
Grupp
,
I.
,
Dorn
,
G. W.
,
Meneton
,
P.
,
Molin
,
D. G. M.
,
Gittenberger-de Groot
,
A. C.
, and
Doetschman
,
T.
,
2003
, “
Transforming Growth Factor Beta in Cardiovascular Development and Function
,”
Cytokine Growth Factor Rev.
,
14
(
5
), pp.
391
407
.
37.
Kung
,
E. O.
, and
Taylor
,
C. A.
,
2011
, “
Development of a Physical Windkessel Module to Re-Create In Vivo Vascular Flow Impedance for In Vivo Experiments
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
2
14
.
38.
Berard
,
X.
,
Déglise
,
S.
,
Alonso
,
F.
,
Saucy
,
F.
,
Meda
,
P.
,
Bordenave
,
L.
,
Corpataux
,
J.-M.
, and
Haefliger
,
J.-A.
,
2013
, “
Role of Hemodynamic Forces in the Ex Vivo Arterialization of Human Saphenous Veins
,”
J. Vasc. Surg.
,
57
(
5
), pp.
1371
1382
.
39.
Lijnen
,
H. R.
,
Silence
,
J.
,
Lemmens
,
G.
,
Frederix
,
L.
, and
Collen
,
D.
,
1998
, “
Regulation of Gelatinase Activity in Mice With Targeted Inactivation of Components of the Plasminogen/Plasmin System
,”
Thromb. Haemost
,
79
(
6
), pp.
1171
1176
.
You do not currently have access to this content.