As a necessary pathway to man-made organs, organ-on-chips (OOC), which simulate the activities, mechanics, and physiological responses of real organs, have attracted plenty of attention over the past decade. As the maturity of three-dimensional (3D) cell-culture models and microfluidics advances, the study of OOCs has made significant progress. This review article provides a comprehensive overview and classification of OOC microfluidics. Specifically, the review focuses on OOC systems capable of being used in preclinical drug screening and development. Additionally, the review highlights the strengths and weaknesses of each OOC system toward the goal of improved drug development and screening. The various OOC systems investigated throughout the review include, blood vessel, lung, liver, and tumor systems and the potential benefits, which each provides to the growing challenge of high-throughput drug screening. Published OOC systems have been reviewed over the past decade (2007–2018) with focus given mainly to more recent advances and improvements within each organ system. Each OOC system has been reviewed on how closely and realistically it is able to mimic its physiological counterpart, the degree of information provided by the system toward the ultimate goal of drug development and screening, how easily each system would be able to transition to large scale high-throughput drug screening, and what further improvements to each system would help to improve the functionality, realistic nature of the platform, and throughput capacity. Finally, a summary is provided of where the broad field of OOCs appears to be headed in the near future along with suggestions on where future efforts should be focused for optimized performance of OOC systems in general.

References

References
1.
Luni
,
C.
,
Serena
,
E.
, and
Elvassore
,
N.
,
2014
, “
Human-on-Chip for Therapy Development and Fundamental Science
,”
Curr. Opin. Biotechnol.
,
25
, pp.
45
50
.
2.
Bhatia
,
S. N.
, and
Ingber
,
D. E.
,
2014
, “
Microfluidic Organs-on-Chips
,”
Nat. Biotechnol.
,
32
(
8
), pp.
760
772
.
3.
Esch
,
E. W.
,
Bahinski
,
A.
, and
Huh
,
D.
,
2015
, “
Organs-on-Chips at the Frontiers of Drug Discovery
,”
Nat. Rev. Drug Discov.
,
14
(
4
), pp.
248
260
.
4.
Huh
,
D.
,
Torisawa
,
Y.
,
Hamilton
,
G. A.
,
Kim
,
H. J.
, and
Ingber
,
D. E.
,
2012
, “
Microengineered Physiological Biomimicry: Organs-on-Chips
,”
Lab Chip
,
12
(
12
), p.
2156
.
5.
Gross
,
A. S.
,
2001
, “
Best Practice in Therapeutic Drug Monitoring
,”
Br. J. Clin. Pharmacol.
,
52
(
S1
), pp.
5S
10S
.
6.
Norris
,
R. L.
,
Martin
,
J. H.
,
Thompson
,
E.
,
Ray
,
J. E.
,
Fullinfaw
,
R. O.
,
Joyce
,
D.
,
Barras
,
M.
,
Jones
,
G. R.
, and
Morris
,
R. G.
,
2010
, “
Current Status of Therapeutic Drug Monitoring in Australia and New Zealand: A Need for Improved Assay Evaluation, Best Practice Guidelines, and Professional Development
,”
Ther. Drug Monit.
,
32
(
5
), pp.
615
623
.
7.
Huh
,
D.
,
Hamilton
,
G. A.
, and
Ingber
,
D. E.
,
2011
, “
From 3D Cell Culture to Organs-on-Chips
,”
Trends Cell Biol.
,
21
(
12
), pp.
745
754
.
8.
Huh
,
D.
,
Matthews
,
B. D.
,
Mammoto
,
A.
,
Montoya-Zavala
,
M.
,
Hsin
,
H. Y.
, and
Ingber
,
D. E.
,
2010
, “
Reconstituting Organ-Level Lung Functions on a Chip
,”
Science
,
328
(
5986
), pp.
1662
1668
.
9.
Khetani
,
S. R.
, and
Bhatia
,
S. N.
,
2008
, “
Microscale Culture of Human Liver Cells for Drug Development
,”
Nat. Biotechnol.
,
26
(
1
), pp.
120
126
.
10.
van Midwoud
,
P. M.
,
Merema
,
M. T.
,
Verpoorte
,
E.
, and
Groothuis
,
G. M. M.
,
2010
, “
A Microfluidic Approach for In Vitro Assessment of Interorgan Interactions in Drug Metabolism Using Intestinal and Liver Slices
,”
Lab Chip
,
10
(
20
), p.
2778
.
11.
Toh
,
Y.-C.
,
Lim
,
T. C.
,
Tai
,
D.
,
Xiao
,
G.
,
van Noort
,
D.
, and
Yu
,
H.
,
2009
, “
A Microfluidic 3D Hepatocyte Chip for Drug Toxicity Testing
,”
Lab Chip
,
9
(
14
), p.
2026
.
12.
van Midwoud
,
P. M.
,
Verpoorte
,
E.
, and
Groothuis
,
G. M. M.
,
2011
, “
Microfluidic Devices for In Vitro Studies on Liver Drug Metabolism and Toxicity
,”
Integr. Biol.
,
3
(
5
), pp.
509
521
.
13.
Baudoin
,
R.
,
Corlu
,
A.
,
Griscom
,
L.
,
Legallais
,
C.
, and
Leclerc
,
E.
,
2007
, “
Trends in the Development of Microfluidic Cell Biochips for In Vitro Hepatotoxicity
,”
Toxicol. In Vitro
,
21
(
4
), pp.
535
544
.
14.
Prot
,
J. M.
, and
Leclerc
,
E.
,
2012
, “
The Current Status of Alternatives to Animal Testing and Predictive Toxicology Methods Using Liver Microfluidic Biochips
,”
Ann. Biomed. Eng.
,
40
(
6
), pp.
1228
1243
.
15.
Wu
,
L. Y.
,
Di Carlo
,
D.
, and
Lee
,
L. P.
,
2008
, “
Microfluidic Self-Assembly of Tumor Spheroids for Anticancer Drug Discovery
,”
Biomed. Microdev.
,
10
(
2
), pp.
197
202
.
16.
Wlodkowic
,
D.
, and
Cooper
,
J. M.
,
2010
, “
Tumors on Chips: Oncology Meets Microfluidics
,”
Curr. Opin. Chem. Biol.
,
14
(
5
), pp.
556
567
.
17.
Siyan
,
W.
,
Feng
,
Y.
,
Lichuan
,
Z.
,
Jiarui
,
W.
,
Yingyan
,
W.
,
Li
,
J.
,
Bingcheng
,
L.
, and
Qi
,
W.
,
2009
, “
Application of Microfluidic Gradient Chip in the Analysis of Lung Cancer Chemotherapy Resistance
,”
J. Pharm. Biomed. Anal.
,
49
(
3
), pp.
806
810
.
18.
Huh
,
D.
,
Kim
,
H. J.
,
Fraser
,
J. P.
,
Shea
,
D. E.
,
Khan
,
M.
,
Bahinski
,
A.
,
Hamilton
,
G. A.
, and
Ingber
,
D. E.
,
2013
, “
Microfabrication of Human Organs-on-Chips
,”
Nat. Protoc.
,
8
(
11
), pp.
2135
2157
.
19.
Therriault
,
D.
,
White
,
S. R.
, and
Lewis
,
J. A.
,
2003
, “
Chaotic Mixing in Three-Dimensional Microvascular Networks Fabricated by Direct-Write Assembly
,”
Nat. Mater.
,
2
(
4
), pp.
265
271
.
20.
Tseng
,
A. A.
,
2004
, “
Recent Developments in Micromilling Using Focused Ion Beam Technology
,”
J. Micromech. Microeng.
,
14
(
4
), pp.
R15
R34
.
21.
Esch
,
M. B.
,
Sung
,
J. H.
,
Yang
,
J.
,
Yu
,
C.
,
Yu
,
J.
,
March
,
J. C.
, and
Shuler
,
M. L.
,
2012
, “
On Chip Porous Polymer Membranes for Integration of Gastrointestinal Tract Epithelium With Microfluidic “body-on-a-chip” Devices
,”
Biomed. Microdev.
,
14
(
5
), pp.
895
906
.
22.
Flachsbart
,
B. R.
,
Wong
,
K.
,
Iannacone
,
J. M.
,
Abante
,
E. N.
,
Vlach
,
R. L.
,
Rauchfuss
,
P. A.
,
Bohn
,
P. W.
,
Sweedler
,
J. V.
, and
Shannon
,
M. A.
,
2006
, “
Design and Fabrication of a Multilayered Polymer Microfluidic Chip With Nanofluidic Interconnects Via Adhesive Contact Printing
,”
Lab Chip
,
6
(
5
), pp.
667
674
.
23.
Prakash
,
S.
,
Pinti
,
M.
, and
Bhushan
,
B.
,
2012
, “
Theory, Fabrication and Applications of Microfluidic and Nanofluidic Biosensors
,”
Philos. Trans. R. Soc. A
,
370
(
1967
), pp.
2269
2303
.
24.
Gao
,
Q.
,
Liu
,
Z.
,
Lin
,
Z.
,
Qiu
,
J.
,
Liu
,
Y.
,
Liu
,
A.
,
Wang
,
Y.
,
Xiang
,
M.
,
Chen
,
B.
,
Fu
,
J.
, and
He
,
Y.
,
2017
, “
3D Bioprinting of Vessel-Like Structures With Multilevel Fluidic Channels
,”
ACS Biomater. Sci. Eng.
,
3
(
3
), pp.
399
408
.
25.
Ong
,
S. M.
,
Zhang
,
C.
,
Toh
,
Y. C.
,
Kim
,
S. H.
,
Foo
,
H. L.
,
Tan
,
C. H.
,
van Noort
,
D.
,
Park
,
S.
, and
Yu
,
H.
,
2008
, “
A Gel-Free 3D Microfluidic Cell Culture System
,”
Biomaterials
,
29
(
22
), pp.
3237
3244
.
26.
Tong
,
R. T.
,
Boucher
,
Y.
,
Kozin
,
S. V.
,
Winkler
,
F.
,
Hicklin
,
D. J.
, and
Jain
,
R. K.
,
2004
, “
Vascular Normalization by Vascular Endothelial Growth Factor Receptor 2 Blockade Induces a Pressure Gradient Across the Vasculature and Improves Drug Penetration in Tumors
,”
Cancer Res.
,
64
(
11
), pp.
3731
3736
.
27.
Maeda
,
H.
,
Wu
,
J.
,
Sawa
,
T.
,
Matsumura
,
Y.
, and
Hori
,
K.
,
2000
, “
Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review
,”
J. Control Release
,
65
(
1–2
), pp.
271
284
.
28.
Gabathuler
,
R.
,
2010
, “
Approaches to Transport Therapeutic Drugs Across the Blood-Brain Barrier to Treat Brain Diseases
,”
Neurobiol. Dis.
,
37
(
1
), pp.
48
57
.
29.
Abbott
,
N. J.
, and
Romero
,
I. A.
,
1996
, “
Transporting Therapeutics Across the Blood-Brain Barrier
,”
Mol. Med. Today
,
2
(
3
), pp.
106
113
.
30.
Jain
,
R. K.
,
1989
, “
Delivery of Novel Therapeutic Agents in Tumors: Physiological Barriers and Strategies
,”
J. Natl. Cancer Inst.
,
81
(
8
), pp.
570
576
.
31.
Prabhakarpandian
,
B.
,
Shen
,
M.-C.
,
Nichols
,
J. B.
,
Mills
,
I. R.
,
Sidoryk-Wegrzynowicz
,
M.
,
Aschner
,
M.
, and
Pant
,
K.
,
2013
, “
SyM-BBB: A Microfluidic Blood Brain Barrier Model
,”
Lab Chip
,
13
(
6
), p.
1093
.
32.
Patton
,
J. S.
,
1996
, “
Mechanisms of Macromolecule Absorption by the Lungs
,”
Adv. Drug Deliv. Rev.
,
19
(
1
), pp.
3
36
.
33.
Bitonti
,
A. J.
, and
Dumont
,
J. A.
,
2006
, “
Pulmonary Administration of Therapeutic Proteins Using an Immunoglobulin Transport Pathway
,”
Adv. Drug Deliv. Rev.
,
58
(
9–10
), pp.
1106
1118
.
34.
Tang
,
Y.
,
Soroush
,
F.
,
Sheffield
,
J. B.
,
Wang
,
B.
,
Prabhakarpandian
,
B.
, and
Kiani
,
M. F.
,
2017
, “
A Biomimetic Microfluidic Tumor Microenvironment Platform Mimicking the EPR Effect for Rapid Screening of Drug Delivery Systems
,”
Sci. Rep.
,
7
(
1
), p.
9359
.
35.
Thomas
,
A.
,
Daniel Ou-Yang
,
H.
,
Lowe-Krentz
,
L.
,
Muzykantov
,
V. R.
, and
Liu
,
Y.
,
2016
, “
Biomimetic Channel Modeling Local Vascular Dynamics of Pro-Inflammatory Endothelial Changes
,”
Biomicrofluidics.
,
10
(
1
), p.
014101
.
36.
Zheng
,
Y.
,
Chen
,
J.
,
Craven
,
M.
,
Choi
,
N. W.
,
Totorica
,
S.
,
Diaz-Santana
,
A.
,
Kermani
,
P.
,
Hempstead
,
B.
,
Fischbach-Teschl
,
C.
,
Lopez
,
J. A.
, and
Stroock
,
A. D.
,
2012
, “
In Vitro Microvessels for the Study of Angiogenesis and Thrombosis
,”
Proc. Natl. Acad. Sci.
,
109
(
24
), pp.
9342
9347
.
37.
Thomas
,
A.
,
Wang
,
S.
,
Sohrabi
,
S.
,
Orr, C.
,
He, R.
,
Shi, W.
, and
Liu, Y.
,
2017
, “
Characterization of Vascular Permeability Using a Biomimetic Microfluidic Blood Vessel Model
,”
Biomicrofluidics
,
11
(
2
), p.
024102
.
38.
Uhl
,
C. G.
,
Muzykantov
,
V. R.
, and
Liu
,
Y.
,
2018
, “
Biomimetic Microfluidic Platform for the Quantification of Transient Endothelial Monolayer Permeability and Therapeutic Transport Under Mimicked Cancerous Conditions
,”
Biomicrofluidics
,
12
(
1
), p.
014101
.
39.
Dereli-Korkut
,
Z.
,
Akaydin
,
H. D.
,
Ahmed
,
A. H. R.
,
Jiang
,
X.
, and
Wang
,
S.
,
2014
, “
Three Dimensional Microfluidic Cell Arrays for Ex Vivo Drug Screening With Mimicked Vascular Flow
,”
Anal. Chem.
,
86
(
6
), pp.
2997
3004
.
40.
Yeatman
,
T. J.
,
2003
, “
The Future of Clinical Cancer Management: One Tumor, One Chip
,”
Am. Surg.
,
69
(
1
), pp.
41
44
.https://search.proquest.com/docview/212846476?pq-origsite=gscholar
41.
Hsiao
,
A. Y.
,
Torisawa
,
Y. S.
,
Tung
,
Y. C.
,
Sud, S.
,
Taichman, R. S.
,
Pienta, K. J.
, and
Takayama, S.
,
2009
, “
Microfluidic System for Formation of PC-3 Prostate Cancer Co-Culture Spheroids
,”
Biomaterials
,
30
(
16
), pp.
3020
3027
.
42.
Zhao
,
L.
,
Wang
,
Z.
,
Fan
,
S.
,
Meng, Q.
,
Li, B.
,
Shao, S.
, and
Wang, Q.
,
2010
, “
Chemotherapy Resistance Research of Lung Cancer Based on Micro-Fluidic Chip System With Flow Medium
,”
Biomed. Microdev.
,
12
(
2
), pp.
325
332
.
43.
Tavana
,
H.
,
Zamankhan
,
P.
,
Christensen
,
P. J.
,
Grotberg
,
J. B.
, and
Takayama
,
S.
,
2011
, “
Epithelium Damage and Protection During Reopening of Occluded Airways in a Physiologic Microfluidic Pulmonary Airway Model
,”
Biomed. Microdev.
,
13
(
4
), pp.
731
742
.
44.
Doshi
,
N.
,
Prabhakarpandian
,
B.
,
Rea-Ramsey
,
A.
,
Pant
,
K.
,
Sundaram
,
S.
, and
Mitragotri
,
S.
,
2010
, “
Flow and Adhesion of Drug Carriers in Blood Vessels Depend on Their Shape: A Study Using Model Synthetic Microvascular Networks
,”
J. Control Release
,
146
(
2
), pp.
196
200
.
45.
Shi
,
J.
,
Fang
,
A. P.
,
Malaquin
,
L.
,
Pepin, A.
,
Decanini, D.
,
Viovy, J. L.
, and
Chan, Y.
,
2007
, “
Highly Parallel Mix-and-Match Fabrication of Nanopillar Arrays Integrated in Microfluidic Channels for Long DNA Molecule Separation
,”
Appl. Phys. Lett.
,
91
(
15
), p.
153114
.
46.
Ye
,
N.
,
Qin
,
J.
,
Shi
,
W.
,
Liu
,
X.
, and
Lin
,
B.
,
2007
, “
Cell-Based High Content Screening Using an Integrated Microfluidic Device
,”
Lab Chip
,
7
(
12
), p.
1696
.
47.
Polini
,
A.
,
Prodanov
,
L.
,
Bhise
,
N. S.
,
Manoharan
,
V.
,
Dokmeci
,
M. R.
, and
Khademhosseini
,
A.
,
2014
, “
Organs-on-a-Chip: A New Tool for Drug Discovery
,”
Expert Opin. Drug Discov.
,
9
(
4
), pp.
335
352
.
48.
Selimović
,
Š.
,
Dokmeci
,
M. R.
, and
Khademhosseini
,
A.
,
2013
, “
Organs-on-a-Chip for Drug Discovery
,”
Curr. Opin. Pharmacol.
,
13
(
5
), pp.
829
833
.
49.
Nam
,
K. H.
,
Smith
,
A. S. T.
,
Lone
,
S.
,
Kwon
,
S.
, and
Kim
,
D. H.
,
2015
, “
Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening
,”
J. Lab. Autom.
,
20
(
3
), pp.
201
215
.
50.
Skardal
,
A.
,
Shupe
,
T.
, and
Atala
,
A.
,
2016
, “
Organoid-on-a-Chip and Body-on-a-Chip Systems for Drug Screening and Disease Modeling
,”
Drug Discov. Today
,
21
(
9
), pp.
1399
1411
.
51.
Ghaemmaghami
,
A. M.
,
Hancock
,
M. J.
,
Harrington
,
H.
,
Kaji
,
H.
, and
Khademhosseini
,
A.
,
2012
, “
Biomimetic Tissues on a Chip for Drug Discovery
,”
Drug Discov. Today
,
17
(
3–4
), pp.
173
181
.
52.
Taylor
,
G.
, and
Gumbleton
,
M.
,
2004
, “
Aerosols for Macromolecule Delivery: Design Challenges and Solutions
,”
Am. J. Drug Deliv.
,
2
(
3
), pp.
143
155
.
53.
Jedrych
,
E.
,
Pawlicka
,
Z.
,
Chudy
,
M.
,
Dybko
,
A.
, and
Brzozka
,
Z.
,
2011
, “
Evaluation of Photodynamic Therapy (PDT) Procedures Using Microfluidic System
,”
Anal. Chim. Acta
,
683
(
2
), pp.
149
155
.
54.
Thomas
,
A.
,
Tan
,
J.
, and
Liu
,
Y.
,
2014
, “
Characterization of Nanoparticle Delivery in Microcirculation Using a Microfluidic Device
,”
Microvasc. Res.
,
94
, pp.
17
27
.
55.
Xu
,
Y.
, and
Matsumoto
,
N.
,
2015
, “
Flexible and In Situ Fabrication of Nanochannels With High Aspect Ratios and Nanopillar Arrays in Fused Silica Substrates Utilizing Focused Ion Beam
,”
RSC Adv.
,
5
(
62
), pp.
50638
50643
.
56.
Kharaziha
,
M.
,
Memic
,
A.
,
Akbari
,
M.
,
Brafman
,
D. A.
, and
Nikkhah
,
M.
,
2016
, “
Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering
,”
Adv. Healthcare Mater.
,
5
(
13
), pp.
1533
1553
.
57.
Tahvildari
,
R.
,
Beamish
,
E.
,
Tabard-Cossa
,
V.
, and
Godin
,
M.
,
2015
, “
Integrating Nanopore Sensors Within Microfluidic Channel Arrays Using Controlled Breakdown
,”
Lab Chip
,
15
(
6
), pp.
1407
1411
.
58.
Li
,
M.
,
Zhao
,
F.
,
Zeng
,
J.
,
Qi
,
J.
,
Lu
,
J.
, and
Shih
,
W.-C.
,
2014
, “
Microfluidic Surface-Enhanced Raman Scattering Sensor With Monolithically Integrated Nanoporous Gold Disk Arrays for Rapid and Label-Free Biomolecular Detection
,”
J. Biomed. Opt.
,
19
(
11
), p.
111611
.
59.
Agarwal
,
P.
,
Wang
,
H.
,
Sun
,
M.
,
Xu
,
J.
,
Zhao
,
S.
,
Liu
,
Z.
,
Gooch
,
K. J.
,
Zhao
,
Y.
,
Lu
,
X.
, and
He
,
X.
,
2017
, “
Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery
,”
ACS Nano.
,
11
(
7
), pp.
6691
6702
.
60.
Agarwal
,
P.
,
Zhao
,
S.
,
Bielecki
,
P.
,
Rao
,
W.
,
Choi
,
J. K.
,
Zhao
,
Y.
,
Yu
,
J.
,
Zhang
,
W.
, and
He
,
X.
,
2013
, “
One-Step Microfluidic Generation of Pre-Hatching Embryo-Like Core–Shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells
,”
Lab Chip
,
13
(
23
), p.
4525
.
61.
Chan
,
J. M.
,
Zervantonakis
,
I. K.
,
Rimchala
,
T.
,
Polacheck
,
W. J.
,
Whisler
,
J.
, and
Kamm
,
R. D.
,
2012
, “
Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting
,”
PLoS One
,
7
(
12
), epub.
62.
Bertassoni
,
L. E.
,
Cecconi
,
M.
,
Manoharan
,
V.
,
Nikkhah
,
M.
,
Hjortnaes
,
J.
,
Cristino
,
A. L.
,
Barabaschi
,
G.
,
Demarchi
,
M. R.
,
Yang
,
Y.
, and
Khandemhosseini
,
A.
,
2014
, “
Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs
,”
Lab Chip
,
14
(
13
), pp.
2202
2211
.
63.
Yamada
,
M.
,
Utoh
,
R.
,
Ohashi
,
K.
,
Tatsumi
,
K.
,
Yamato
,
M.
,
Okano
,
T.
, and
Seki
,
M.
,
2012
, “
Controlled Formation of Heterotypic Hepatic Micro-Organoids in Anisotropic Hydrogel Microfibers for Long-Term Preservation of Liver-Specific Functions
,”
Biomaterials
,
33
(
33
), pp.
8304
8315
.
64.
Moraes
,
C.
,
Mehta
,
G.
,
Lesher-Perez
,
S. C.
, and
Takayama
,
S.
,
2012
, “
Organs-on-a-Chip: A Focus on Compartmentalized Microdevices
,”
Ann. Biomed. Eng.
,
40
(
6
), pp.
1211
1227
.
65.
Tourovskaia
,
A.
,
Figueroa-Masot
,
X.
, and
Folch
,
A.
,
2005
, “
Differentiation-on-a-Chip: A Microfluidic Platform for Long-Term Cell Culture Studies
,”
Lab Chip
,
5
(
1
), p.
14
.
66.
Huh
,
D.
,
Leslie
,
D. C.
,
Matthews
,
B. D.
,
Fraser, J. P.
,
Jurek, S.
,
Hamilton, G. A.
,
Thorneloe, K. S.
,
McAlexander, M. A.
, and
Ingber, D. E.
,
2012
, “
A Human Disease Model of Drug Toxicity-Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice
,”
Sci. Transl. Med.
,
4
(
159
), p.
159ra147
.
67.
Yum
,
K.
,
Hong
,
S. G.
,
Healy
,
K. E.
, and
Lee
,
L. P.
,
2014
, “
Physiologically Relevant Organs on Chips
,”
Biotechnol. J.
,
9
(
1
), pp.
16
27
.
68.
Park
,
J. Y.
,
Kim
,
S. K.
,
Woo
,
D. H.
,
Lee
,
E. J.
,
Kim
,
J. H.
, and
Lee
,
S. H.
,
2009
, “
Differentiation of Neural Progenitor Cells in a Microfluidic Chip-Generated Cytokine Gradient
,”
Stem Cells.
,
27
(
11
), pp.
2646
2654
.
69.
Park
,
J. Y.
,
Yoo
,
S. J.
,
Hwang
,
C. M.
, and
Lee
,
S.-H.
,
2009
, “
Simultaneous Generation of Chemical Concentration and Mechanical Shear Stress Gradients Using Microfluidic Osmotic Flow Comparable to Interstitial Flow
,”
Lab Chip
,
9
(
15
), p.
2194
.
70.
Bertassoni
,
L. E.
,
Cardoso
,
J. C.
,
Manoharan
,
V.
,
Cristino, A. L.
,
Bhise, N. S.
,
Araujo, W. A.
,
Zorlutuna, P.
,
Vrana, N. E.
,
Ghaemmaghami, A. M.
,
Dokmeci, M. R.
, and
Khademhosseini, A.
,
2014
, “
Direct-Write Bioprinting of Cell-Laden Methacrylated Gelatin Hydrogels
,”
Biofabrication
,
6
(
2
), p.
024105
.
71.
McCain
,
M. L.
,
Agarwal
,
A.
,
Nesmith
,
H. W.
,
Nesmith
,
A. P.
, and
Parker
,
K. K.
,
2014
, “
Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues
,”
Biomaterials
,
35
(
21
), pp.
5462
5471
.
72.
Annabi
,
N.
,
Selimović
,
Š.
,
Acevedo Cox
,
J. P.
,
Ribas, J.
,
Afshar Bakooshli, M.
,
Heintze, D.
,
Weiss, A. S.
,
Cropek, D.
, and
Khademhosseini, A.
,
2013
, “
Hydrogel-Coated Microfluidic Channels for Cardiomyocyte Culture
,”
Lab Chip
,
13
(
18
), p.
3569
.
73.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Gladman
,
A. S.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.
74.
Agarwal
,
A.
,
Goss
,
J. A.
,
Cho
,
A.
,
McCain
,
M. L.
, and
Parker
,
K. K.
,
2013
, “
Microfluidic Heart on a Chip for Higher Throughput Pharmacological Studies
,”
Lab Chip
,
13
(
18
), p.
3599
.
75.
Serena
,
E.
,
Cimetta
,
E.
,
Zatti
,
S.
,
Zaglia, T.
,
Zagallo, M.
,
Keller, G.
, and
Elvassore, N.
,
2012
, “
Micro-Arrayed Human Embryonic Stem Cells-Derived Cardiomyocytes for In Vitro Functional Assay
,”
PLoS One
,
7
(
11
), p.
e48483
.
76.
Douville
,
N. J.
,
Zamankhan
,
P.
,
Tung
,
Y.-C.
,
Li, R.
,
Vaughan, B. L.
,
Tai, C.-F.
,
White, J.
,
Christensen, P. J.
,
Grotberg, J. B.
, and
Takayama, S.
,
2011
, “
Combination of Fluid and Solid Mechanical Stresses Contribute to Cell Death and Detachment in a Microfluidic Alveolar Model
,”
Lab Chip
,
11
(
4
), pp.
609
619
.
77.
Gu
,
L.
, and
Mooney
,
D. J.
,
2015
, “
Biomaterials and Emerging Anticancer Therapeutics: Engineering the Microenvironment
,”
Nat. Rev. Cancer
,
16
(
1
), pp.
56
66
.
You do not currently have access to this content.