This paper describes a control approach for a lower limb exoskeleton intended to enable stair ascent and descent of variable geometry staircases for individuals with paraplegia resulting from spinal cord injury (SCI). To assess the efficacy of ascent and descent functionality provided by the control approach, the controller was implemented in a lower limb exoskeleton and tested in experimental trials on three subjects with motor-complete SCI on three staircases of varying geometry. Results from the assessments indicate that subjects were able to capably ascend and descend step heights varying from 7.6 to 16.5 cm without changing control settings; the controller provided for step time consistency highly representative of healthy subjects (9.2% variation in exoskeleton step time, relative to 7.7% variation in healthy subjects); and the exoskeleton provided peak joint torques on average 110% and 74% of the healthy-subject peak joint torques during stair ascent and descent, respectively. Subject perceived exertion during the stair ascent and descent activities was rated between “light” and “very light.”

References

References
1.
WHO/ISCoS
,
2013
,
International Perspectives on Spinal Cord Injury
,
World Health Organization
,
Geneva, Switzerland
.
2.
Phillips
,
L.
, and
McFarland
,
S. R.
,
1987
,
Spinal Cord Injury: A Guide for Patient and Family
,
Raven Press
, New York.
3.
Contreras-Vidal
,
J. L.
,
A Bhagat
,
N.
,
Brantley
,
J.
,
Cruz-Garza
,
J. G.
,
He
,
Y.
,
Manley
,
Q.
,
Nakagome
,
S.
,
Nathan
,
K.
,
Tan
,
S. H.
,
Zhu
,
F.
, and
Pons
,
J. L.
,
2016
, “
Powered Exoskeletons for Bipedal Locomotion After Spinal Cord Injury
,”
J. Neural Eng.
,
13
(
3
), p.
031001
.
4.
Yan
,
T.
,
Cempini
,
M.
,
Oddo
,
C. M.
, and
Vitiello
,
N.
,
2015
, “
Review of Assistive Strategies in Powered Lower-Limb Orthoses and Exoskeletons
,”
Rob. Auton. Syst.
,
64
, pp.
120
136
.
5.
Wang
,
S.
,
Wang
,
L.
,
Meijneke
,
C.
,
van Asseldonk
,
E.
,
Hoellinger
,
T.
,
Cheron
,
G.
,
Ivanenko
,
Y.
,
La Scaleia
,
V.
,
Sylos-Labini
,
F.
,
Molinari
,
M.
,
Tamburella
,
F.
,
Pisotta
,
I.
,
Thorsteinsson
,
F.
,
Ilzkovitz
,
M.
,
Gancet
,
J.
,
Nevatia
,
Y.
,
Hauffe
,
R.
,
Zanow
,
F.
, and
van der Kooij
,
H.
,
2015
, “
Design and Control of the MINDWALKER Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
277
286
.
6.
Tsukahara
,
A.
,
Hasegawa
,
Y.
,
Eguchi
,
K.
, and
Sankai
,
Y.
,
2015
, “
Restoration of Gait for Spinal Cord Injury Patients Using HAL With Intention Estimator for Preferable Swing Speed
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
308
318
.
7.
Quintero
,
H. A.
,
Farris
,
R. J.
, and
Goldfarb
,
M.
,
2012
, “
A Method for the Autonomous Control of Lower Limb Exoskeletons for Persons With Paraplegia
,”
ASME J. Med. Devices
,
6
(
4
), p.
041003
.
8.
Quintero
,
H.
,
Farris
,
R.
,
Hartigan
,
C.
,
Clesson
,
I.
, and
Goldfarb
,
M.
,
2011
, “
A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals
,”
Top. Spinal Cord Inj. Rehabil.
,
17
(
1
), pp.
25
33
.
9.
He
,
H.
, and
Kiguchi
,
K.
,
2007
, “
A Study on Emg-Based Control of Exoskeleton Robots for Human Lower-Limb Motion Assist
,”
Sixth International Special Topic Conference on Information Technology Applications in Biomedicine
(
ITAB
), Tokyo, Japan, Nov. 8–11, pp.
292
295
.
10.
Kazerooni
,
H.
,
Racine
,
J.-L.
,
Huang
,
L.
, and
Steger
,
R.
,
2005
, “
On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4353
4360
.
11.
Garate
,
V. R.
,
Parri
,
A.
,
Yan
,
T.
,
Munih
,
M.
,
Lova
,
R. M.
,
Vitiello
,
N.
, and
Ronsse
,
R.
,
2016
, “
Motor Primitive-Based Control for Lower-Limb Exoskeletons
,”
Sixth IEEE International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Singapore, June 26–29, pp.
655
661
.
12.
Tucker
,
M. R.
,
Olivier
,
J.
,
Pagel
,
A.
,
Bleuler
,
H.
,
Bouri
,
M.
,
Lambercy
,
O.
,
Millán
,
J. D. R.
,
Riener
,
R.
,
Vallery
,
H.
, and
Gassert
,
R.
,
2015
, “
Control Strategies for Active Lower Extremity Prosthetics and Orthotics: A Review
,”
J. Neuroeng. Rehabil.
,
12
(
1
), pp. 1–29.
13.
Farris
,
R. J.
,
Quintero
,
H. A.
, and
Goldfarb
,
M.
,
2012
, “
Performance Evaluation of a Lower Limb Exoskeleton for Stair Ascent and Descent With Paraplegia
,”
Annual International Conference on Engineering in Medicine and Biology Society
(
EMBC
), San Diego, CA, Aug. 28–Sept. 1, pp.
1908
1911
.
14.
Ekelem
,
A.
,
Murray
,
S.
, and
Goldfarb
,
M.
,
2015
, “
Preliminary Assessment of Variable Geometry Stair Ascent and Descent With a Powered Lower Limb Orthosis for Individuals With Paraplegia
,”
37th Annual International Conference on Engineering in Medicine and Biology Society
(
EMBC
), Milan, Italy, Aug. 25–29, pp.
4671
4674
.
15.
Hartigan
,
C.
,
Kandilakis
,
C.
,
Dalley
,
S.
,
Clausen
,
M.
,
Wilson
,
E.
,
Morrison
,
S.
,
Etheridge
,
S.
, and
Farris
,
R.
,
2015
, “
Mobility Outcomes Following Five Training Sessions With a Powered Exoskeleton
,”
Top. Spinal Cord Inj. Rehabil.
,
21
(
2
), pp.
93
99
.
16.
Borg
,
G.
,
1998
,
Borg's Perceived Exertion Pain Scales
, Human Kinetics, Champaign, IL.
17.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
,
2002
, “
Stair Ascent and Descent at Different Inclinations
,”
Gait Posture
,
15
(
1
), pp.
32
44
.
You do not currently have access to this content.