Manufacturers are constantly seeking to design new, better performing transvenous cardiac leads to prevent perforation of the heart by the lead tip. Currently, there is no standardized test method to measure the buckling load of leads, a major factor in the propensity of the lead to perforate the heart. This study further investigates the effect of boundary conditions on buckling loads at the lead tip of different transvenous cardiac leads achieved using different variations of our initial physiologically relevant test method. The goals of the test are to create the maximum buckling load with high repeatability and the simplest possible design. A buckling test was performed to capture maximum buckling load using three leads of each model (five currently available cardiac lead models) and were tested in each of six test setups. The buckling test methodology had a substantial effect on the load-displacement profiles, regardless of whether the lead was a pacemaker or defibrillator lead. By adding the right ventricular (RV) constraint, the buckling load more than doubled for most leads. The use of a lubricant reduced friction between the lead body and the RV surface, and thereby subsequently lowered the buckling load in those setups that used the RV constraint. In addition, the use of the lubricant reduced the variability in the results. The addition of both the RV constraint and the lubricant substantially influences the mechanical behavior of transvenous cardiac leads and is recommended for buckling testing of transvenous cardiac leads.

References

References
1.
Benjamin
,
E. J.
,
Blaha
,
M. J.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Das
,
S. R.
,
Deo
,
R.
,
de Ferranti
,
S. D.
,
Floyd
,
J.
,
Fornage
,
M.
,
Gillespie
,
C.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Jordan
,
L. C.
,
Judd
,
S. E.
,
Lackland
,
D.
,
Lichtman
,
J. H.
,
Lisabeth
,
L.
,
Liu
,
S.
,
Longenecker
,
C. T.
,
Mackey
,
R. H.
,
Matsushita
,
K.
,
Mozaffarian
,
D.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Thiagarajan
,
R. R.
,
Reeves
,
M. J.
,
Ritchey
,
M.
,
Rodriguez
,
C. J.
,
Roth
,
G. A.
,
Rosamond
,
W. D.
,
Sasson
,
C.
,
Towfighi
,
A.
,
Tsao
,
C. W.
,
Turner
,
M. B.
,
Virani
,
S. S.
,
Voeks
,
J. H.
,
Willey
,
J. Z.
,
Wilkins
,
J. T.
,
Wu
,
J. H.
,
Alger
,
H. M.
,
Wong
,
S. S.
, and
Muntner
,
P.
, and
American Heart Association Statistics Subcommittee and Stroke Statistics Subcommittee
,
2017
, “
Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association
,”
Circulation
,
135
(
10
), pp.
e146
e603
.
2.
Mahapatra
,
S.
,
Bybee
,
K. A.
,
Bunch
,
T. J.
,
Espinosa
,
R. E.
,
Sinak
,
L. J.
,
McGoon
,
M. D.
, and
Hayes
,
D. L.
,
2005
, “
Incidence and Predictors of Cardiac Perforation After Permanent Pacemaker Placement
,”
Heart Rhythm
,
2
(
9
), pp.
907
911
.
3.
Danik
,
S. B.
,
Mansour
,
M.
,
Singh
,
J.
,
Reddy
,
V. Y.
,
Ellinor
,
P. T.
,
Milan
,
D.
,
Heist
,
E. K.
,
d'Avila
,
A.
,
Ruskin
,
J. N.
, and
Mela
,
T.
,
2007
, “
Increased Incidence of Subacute Lead Perforation Noted With One Implantable Cardioverter-Defibrillator
,”
Heart Rhythm
,
4
(
4
), pp.
439
442
.
4.
Hirschl
,
D. A.
,
Jain
,
V. R.
,
Spindola-Franco
,
H.
,
Gross
,
J. N.
, and
Haramati
,
L. B.
,
2007
, “
Prevalence and Characterization of Asymptomatic Pacemaker and ICD Lead Perforation on CT
,”
Pacing Clin. Electrophysiol.
,
30
(
1
), pp.
28
32
.
5.
Cano
,
Ó.
,
Andrés
,
A.
,
Alonso
,
P.
,
Osca
,
J.
,
Sancho-Tello
,
M. J.
,
Olagüe
,
J.
, and
Martínez-Dolz
,
L.
,
2017
, “
Incidence and Predictors of Clinically Relevant Cardiac Perforation Associated With Systematic Implantation of Active-Fixation Pacing and Defibrillation Leads: A Single-Centre Experience With Over 3800 Implanted Leads
,”
Europace
,
19
(
1
), pp.
96
102
.
6.
Rajkumar
,
C. A.
,
Claridge
,
S.
,
Jackson
,
T.
,
Behar
,
J.
,
Johnson
,
J.
,
Sohal
,
M.
,
Amraoui
,
S.
,
Nair
,
A.
,
Preston
,
R.
,
Gill
,
J.
,
Rajani
,
R.
, and
Aldo Rinaldi
,
C.
,
2017
, “
Diagnosis and Management of Iatrogenic Cardiac Perforation Caused by Pacemaker and Defibrillator Leads
,”
Europace
,
19
(
6
), pp.
1031
1037
.
7.
Reddy
,
V. Y.
,
Exner
,
D. V.
,
Cantillon
,
D. J.
,
Doshi
,
R.
,
Bunch
,
T. J.
,
Tomassoni
,
G. F.
,
Friedman
,
P. A.
,
Estes
,
N. A.
, III
,
Ip
,
J.
,
Niazi
,
I.
,
Plunkitt
,
K.
,
Banker
,
R.
,
Porterfiled
,
J.
,
Ip
,
J. E.
, and
Dukkipati
,
S. R.
,
2015
, “
Percutaneous Implantation of an Entirely Intracardiac Leadless Pacemaker
,”
N. Engl. J. Med.
,
373
(
12
), pp.
1125
1135
.
8.
Duray
,
G. Z.
,
Ritter
,
P.
,
El-Chami
,
M.
,
Narasimhan
,
C.
,
Omar
,
R.
,
Tolosana
,
J. M.
,
Zhang
,
S.
,
Soejima
,
K.
,
Steinwender
,
C.
,
Rapallini
,
L.
,
Cicic
,
A.
,
Fagan
,
D. H.
,
Liu
,
S.
, and
Reynolds
,
D.
,
2017
, “
Long-Term Performance of a Transcatheter Pacing System: 12-Month Results From the Micra Transcatheter Pacing Study Group
,”
Heart Rhythm
,
14
(
5
), pp.
702
709
.
9.
Opolski
,
G.
,
Pieniak
,
M.
,
Steckiewicz
,
R.
, and
Kraska
,
T.
,
1983
, “
Flexibility of Permanent Intracardiac Electrode Leads. Achieving a Balance Between Perforation and Displacement
,”
Seventh World Symposium on Cardiac Pacing
, Vienna, Austria, May 1–5, pp.
423
426.
10.
Stephen
,
E. A.
,
Walsh
,
D. L.
,
Duraiswamy
,
N.
,
Vesnovsky
,
O.
, and
Topoleski
,
L. D. T.
,
2015
, “
Design of an Experimental Test System to Investigate Parameters Affecting Distal Tip Loads of Pacemaker and Defibrillator Leads
,”
ASME J. Med. Devices
,
9
(
1
), p.
011001
.
11.
Walsh
,
D. L.
,
Williams
,
A. M.
,
Duraiswamy
,
N.
,
Vesnovsky
,
O.
, and
Topoleski
,
L. D. T.
,
2016
, “
The Effect of Simulated Anatomical Constraints on Buckling Loads of Cardiac Leads
,” Summer Biomechanics, Bioengineering, and Biotransport (SB3C) Conference, National Harbor, MD, June 29–July 2, Paper No. SB3C2016-906.
You do not currently have access to this content.