A system was developed for computed tomography (CT)-guided needle placement in the thorax and abdomen, providing precise aiming of a needle guide (NG) to reach a user-specified target in a single manual insertion. The objective of this work is to present its technical design and analyze its performance in terms of placement error in air. The individual contributions to the placement error of a fiducial marker based system-to-CT registration system, a two degrees-of-freedom (2DOFs) drive system to aim the NG, and a structural link between NG and CT table were experimentally determined, in addition to the placement error of the overall system. An error contribution of 0.81 ± 0.34 mm was determined for the registration system, <1.2 mm and <3.3 mm for the drive system, and 0.35 mm and 0.43 mm for two load cases of the structural link. The overall unloaded system achieved 1.0 ± 0.25 mm and 2.6 ± 0.7 mm at 100 mm and 250 mm depth, respectively. The overall placement errors in air do not exceed the 5 mm error specified as a clinical user requirement for needle placement in tissue.

References

1.
Patch
,
D.
, and
Dhillon
,
A.
,
2011
, “
Biopsy of the Liver
,”
Sherlock's Diseases of the Liver and Biliary System
, 12th ed.,
J.
Dooley
,
A.
Lok
,
A.
Burroughs
, and
E.
Heathcote
, eds.,
Wiley-Blackwell
,
Hoboken, NJ
, pp.
36
47
.
2.
McCarley
,
J.
, and
Soulen
,
M.
,
2010
, “
Percutaneous Ablation of Hepatic Tumors
,”
Semin. Interventional Radiol.
,
27
(
3
), pp.
255
260
.
3.
Winokur
,
R.
,
Pua
,
B.
,
Sullivan
,
B.
, and
Madoff
,
D.
,
2013
, “
Percutaneous Lung Biopsy: Technique, Efficacy, and Complications
,”
Semin. Interventional Radiol.
,
30
(
2
), pp.
121
127
.
4.
Dupuy
,
D.
, and
Shulman
,
M.
,
2010
, “
Current Status of Thermal Ablation Treatments for Lung Malignancies
,”
Semin. Interventional Radiol.
,
27
(
3
), pp.
268
275
.
5.
Arnolli
,
M.
,
Hanumara
,
N.
,
Franken
,
M.
,
Brouwer
,
D.
, and
Broeders
,
I.
,
2015
, “
An Overview of Systems for CT- and MRI-Guided Percutaneous Needle Placement in the Thorax and Abdomen
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
11
(
4
), pp.
458
475
.
6.
Barrett
,
S.
,
Hanumara
,
N.
,
Walsh
,
C.
,
Slocum
,
A.
,
Gupta
,
R.
, and
Shepard
,
J.
,
2005
, “A Remote Needle Guidance System for Percutaneous Biopsies,”
ASME
Paper No. DETC2005-85387.
7.
Stoianovici
,
D.
,
Cleary
,
K.
,
Patriciu
,
A.
,
Mazilu
,
D.
,
Stanimir
,
A.
,
Craciunoiu
,
N.
,
Watson
,
V.
, and
Kavoussi
,
L.
,
2003
, “
AcuBot: A Robot for Radiological Interventions
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
927
930
.
8.
Melzer
,
A.
,
Gutmann
,
B.
,
Lukoscheck
,
A.
,
Mark
,
M.
,
Zylka
,
W.
, and
Fischer
,
H.
,
2003
, “
Experimental Evaluation of an MR Compatible Telerobotic System for CT MR-Guided Interventions
,”
Suppl. Radiol.
,
226
(
409
), p.
444
.
9.
DEMCON,
2015, “Precise Needle Positioning,” DEMCON, Enschede, The Netherlands, accessed Jan. 30, 2018, https://www.demcon.nl/en/showcase/precise-needle-positioning
10.
Sprawls
,
P.
, Jr
.,
1995
,
Physical Principles of Medical Imaging
, 2nd ed.,
Medical Physics Publishing
,
Madison, WI
.
11.
Arnolli
,
M.
,
Franken
,
M.
, and
Brouwer
,
D.
,
2013
, “
CT Registration: Experimental Determination of Suited Fiducial Marker Material and Registration Errors
,”
ASME J. Med. Devices
,
7
(
2
), p.
020946
.
You do not currently have access to this content.