This study evaluated the biomechanical efficacy of single-tunnel double-bundle anterior cruciate ligament (ACL) reconstruction technique. The graft construct is achieved using a novel fixation device that splits an ACL (SPACL) graft into two bundles, recreating the anteromedial (AM) and posterolateral (PL) bundles for ACL reconstruction. A pullout strength test of the SPACL was performed using a 7-mm bovine digital extensor tendon graft. The capability in restoration of knee kinematics after SPACL reconstruction was investigated using cadaveric human knees on a robotic testing system under an anterior tibial load of 134 N and a simulated quadriceps load of 400 N. The data indicated that the SPACL graft has a pullout strength of 823.7±172.3 N. Under the 134 N anterior tibial load, the anteroposterior joint laxity had increased constraint using the SPACL reconstruction but not significantly (p > 0.05) at all selected flexion angles. Under the 400 N quadriceps load, no significant differences were observed between the anterior tibial translation of intact knee and SPACL conditions at all selected flexion angles, but the SPACL graft induced a significant increase in external tibial rotation compared to the intact knee condition at all selected flexion angles with a maximal external rotation of −3.20 deg ±3.6 deg at 90 deg flexion. These data showed that the SPACL technique is equivalent or superior to existing ACL reconstruction techniques in restoration of knee laxity and kinematics. The new SPACL reconstruction technique could provide a valuable alternation to contemporary ACL reconstruction surgery by more closely recreating native ACL kinematics.

References

References
1.
Carulli
,
C.
,
Matassi
,
F.
,
Soderi
,
S.
,
Sirleo
,
L.
,
Munz
,
G.
, and
Innocenti
,
M.
,
2016
, “
Resorbable Screw and Sheath versus Resorbable Interference Screw and Staples for ACL Reconstruction: A Comparison of Two Tibial Fixation Methods
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
25
(4), pp. 1264–1271.
2.
Saygi
,
B.
,
Karaman
,
O.
,
Sirin
,
E.
,
Arslan
,
I.
,
Demir
,
A.
, and
Oztermeli
,
A.
,
2016
, “
Comparison of Different Femoral Fixation Implants and Fit Techniques for Tunnel Widening and Clinical Outcome in ACL Reconstruction Using Hamstring Autograft
,”
Arch. Orthop. Trauma Surg.
,
136
(
2
), pp.
241
247
.
3.
Gadikota
,
H. R.
,
Hosseini
,
A.
,
Asnis
,
P.
, and
Li
,
G.
,
2015
, “
Kinematic Analysis of Five Different Anterior Cruciate Ligament Reconstruction Techniques
,”
Knee Surg. Relat. Res.
,
27
(
2
), pp.
69
75
.
4.
Srinivas
,
D. K.
,
Kanthila
,
M.
,
Saya
,
R. P.
, and
Vidyasagar
,
J.
,
2016
, “
Femoral and Tibial Tunnel Widening Following Anterior Cruciate Ligament Reconstruction Using Various Modalities of Fixation: A Prospective Observational Study
,”
J. Clin. Diagn. Res.
,
10
(
11
), pp.
RC09
RC11
.
5.
Aga
,
C.
,
Wilson
,
K. J.
,
Johansen
,
S.
,
Dornan
,
G.
,
La Prade
,
R. F.
, and
Engebretsen
,
L.
,
2016
, “
Tunnel Widening in Single- Versus Double-Bundle Anterior Cruciate Ligament Reconstructed Knees
,”
Knee Surg. Sports Traumatol. Arthrosc.
, 25(4), pp. 1316–1327.
6.
Cohen
,
S. B.
,
Pandarinath
,
R.
,
O'Hagan
,
T.
,
Marchetto
,
P. A.
,
Hyatt
,
A.
,
Wascher
,
J.
, and
Deluca
,
P. F.
,
2015
, “
Results of ACL Reconstruction With Tibial Retroscrew Fixation: Comparison of Clinical Outcomes and Tibial Tunnel Widening
,”
Physician Sportsmed.
,
43
(
2
), pp.
138
–1
42
.
7.
Kanazawa
,
T.
,
Soejima
,
T.
,
Noguchi
,
K.
,
Tabuchi
,
K.
,
Noyama
,
M.
,
Nakamura
,
K.
, and
Shiba
,
N.
,
2014
, “
Tendon-to-Bone Healing Using Autologous Bone Marrow-Derived Mesenchymal Stem Cells in ACL Reconstruction Without a Tibial Bone Tunnel-a Histological Study
,”
Muscles Ligaments Tendons J.
,
4
(
2
), pp.
201
206
.
8.
Mermerkaya
,
M. U.
,
Atay
,
O. A.
,
Kaymaz
,
B.
,
Bekmez
,
S.
,
Karaaslan
,
F.
, and
Doral
,
M. N.
,
2015
, “
Anterior Cruciate Ligament Reconstruction Using a Hamstring Graft: A Retrospective Comparison of Tunnel Widening upon Use of Two Different Femoral Fixation Methods
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
23
(
8
), pp.
2283
2291
.
9.
Starantzis
,
K. A.
,
Mastrokalos
,
D.
,
Koulalis
,
D.
,
Papakonstantinou
,
O.
,
Soucacos
,
P. N.
, and
Papagelopoulos
,
P. J.
,
2014
, “
The Potentially Positive Role of PRPs in Preventing Femoral Tunnel Widening in ACL Reconstruction Surgery Using Hamstrings: A Clinical Study in 51 Patients
,”
J. Sports Med.
,
2014
, p.
789317
.
10.
Kim
,
S. J.
,
Bae
,
J. H.
,
Song
,
S. H.
, and
Lim
,
H. C.
,
2013
, “
Bone Tunnel Widening With Autogenous Bone Plugs Versus Bioabsorbable Interference Screws for Secondary Fixation in ACL Reconstruction
,”
J. Bone Jt. Surg. Am.
,
95
(
2
), pp.
103
108
.
11.
Uzumcugil
,
O.
,
Yalcinkaya
,
M.
,
Ozturkmen
,
Y.
,
Dikmen
,
G.
, and
Caniklioglu
,
M.
,
2012
, “
Effect of PEEK Polymer on Tunnel Widening After Hamstring ACL Reconstruction
,”
Orthopedics
,
35
(
5
), pp.
e654
e659
.
12.
Vadala
,
A.
,
Iorio
,
R.
,
De Carli
,
A.
,
Ferretti
,
M.
,
Paravani
,
D.
,
Caperna
,
L.
,
Iorio
,
C.
,
Gatti
,
A.
, and
Ferretti
,
A.
,
2013
, “
Platelet-Rich Plasma: Does It Help Reduce Tunnel Widening after ACL Reconstruction?
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
21
(
4
), pp.
824
829
.
13.
Suomalainen
,
P.
,
Jarvela
,
T.
,
Paakkala
,
A.
,
Kannus
,
P.
, and
Jarvinen
,
M.
,
2012
, “
Double-Bundle Versus Single-Bundle Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Study With 5-Year Results
,”
Am. J. Sports Med.
,
40
(
7
), pp.
1511
1518
.
14.
Carbone
,
A.
,
Carballo
,
C.
,
Ma
,
R.
,
Wang
,
H.
,
Deng
,
X.
,
Dahia
,
C.
, and
Rodeo
,
S.
,
2016
, “
Indian Hedgehog Signaling and the Role of Graft Tension in Tendon-to-Bone Healing: Evaluation in a Rat ACL Reconstruction Model
,”
J. Orthop. Res.
,
34
(
4
), pp.
641
649
.
15.
Lui
,
P. P.
,
Lee
,
Y. W.
,
Mok
,
T. Y.
, and
Cheuk
,
Y. C.
,
2015
, “
Peri-Tunnel Bone Loss: Does It Affect Early Tendon Graft to Bone Tunnel Healing After ACL Reconstruction?
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
23
(
3
), pp.
740
751
.
16.
Hensler
,
D.
,
Illingworth
,
K. D.
,
Musahl
,
V.
,
Working
,
Z. M.
,
Kobayashi
,
T.
,
Miyawaki
,
M.
,
Lorenz
,
S.
,
Witt
,
M.
,
Irrgang
,
J. J.
,
Huard
,
J.
, and
Fu
,
F. H.
,
2015
, “
Does Fibrin Clot Really Enhance Graft Healing After Double-Bundle ACL Reconstruction in a Caprine Model?
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
23
(
3
), pp.
669
679
.
17.
Fleming
,
B. C.
,
Proffen
,
B. L.
,
Vavken
,
P.
,
Shalvoy
,
M. R.
,
Machan
,
J. T.
, and
Murray
,
M. M.
,
2015
, “
Increased Platelet Concentration Does Not Improve Functional Graft Healing in Bio-Enhanced ACL Reconstruction
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
23
(
4
), pp.
1161
1170
.
18.
Mutsuzaki
,
H.
, and
Sakane
,
M.
,
2011
, “
Calcium Phosphate-Hybridized Tendon Graft to Enhance Tendon-Bone Healing Two Years After ACL Reconstruction in Goats
,”
Sports Med. Arthroscopy Rehabil. Ther. Technol.
,
3
(
1
), p.
31
.
19.
Lovric
,
V.
,
Kanazawa
,
T.
,
Nakamura
,
Y.
,
Oliver
,
R. A.
,
Yu
,
Y.
, and
Walsh
,
W. R.
,
2011
, “
Effects of Gaps Induced Into the ACL Tendon Graft on Tendon-Bone Healing in a Rodent ACL Reconstruction Model
,”
Muscles Ligaments Tendons J.
,
1
(
3
), pp.
91
99
.
20.
Hunt
,
P.
,
Rehm
,
O.
, and
Weiler
,
A.
,
2006
, “
Soft Tissue Graft Interference Fit Fixation: Observations on Graft Insertion Site Healing and Tunnel Remodeling 2 Years After ACL Reconstruction in Sheep
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
14
(
12
), pp.
1245
1251
.
21.
Biercevicz
,
A. M.
,
Akelman
,
M. R.
,
Fadale
,
P. D.
,
Hulstyn
,
M. J.
,
Shalvoy
,
R. M.
,
Badger
,
G. J.
,
Tung
,
G. A.
,
Oksendahl
,
H. L.
, and
Fleming
,
B. C.
,
2015
, “
MRI Volume and Signal Intensity of ACL Graft Predict Clinical, Functional, and Patient-Oriented Outcome Measures After ACL Reconstruction
,”
Am. J. Sports Med.
,
43
(
3
), pp.
693
699
.
22.
Spindler
,
K. P.
,
Murray
,
M. M.
,
Carey
,
J. L.
,
Zurakowski
,
D.
, and
Fleming
,
B. C.
,
2009
, “
The Use of Platelets to Affect Functional Healing of an Anterior Cruciate Ligament (ACL) Autograft in a Caprine ACL Reconstruction Model
,”
J. Orthop. Res.
,
27
(
5
), pp.
631
638
.
23.
Li
,
F.
,
Jia
,
H.
, and
Yu
,
C.
,
2007
, “
ACL Reconstruction in a Rabbit Model Using Irradiated Achilles Allograft Seeded With Mesenchymal Stem Cells or PDGF-B Gene-Transfected Mesenchymal Stem Cells
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
15
(
10
), pp.
1219
1227
.
24.
Samuelsen, B. T., Webster, K. E., Johnson, N. R., Hewett, T. E., and Krych, A. J., 2017, “Hamstring Autograft Versus Patellar Tendon Autograft for ACL Reconstruction: Is There a Difference in Graft Failure Rate? A Meta-Analysis of 47,613 Patients,”
Clin. Orthop. Relat. Res.
, epub.
25.
Gadikota
,
H. R.
,
Seon
,
J. K.
,
Chen
,
C. H.
,
Wu
,
J. L.
,
Gill
,
T. J.
, and
Li
,
G.
,
2011
, “
In Vitro and Intraoperative Laxities After Single-Bundle and Double-Bundle Anterior Cruciate Ligament Reconstructions
,”
Arthroscopy
,
27
(
6
), pp.
849
860
.
26.
Gadikota
,
H. R.
,
Wu
,
J. L.
,
Seon
,
J. K.
,
Sutton
,
K.
,
Gill
,
T. J.
, and
Li
,
G.
,
2010
, “
Single-Tunnel Double-Bundle Anterior Cruciate Ligament Reconstruction With Anatomical Placement of Hamstring Tendon Graft: Can It Restore Normal Knee Joint Kinematics?
,”
Am. J. Sports Med.
,
38
(
4
), pp.
713
720
.
27.
Seon
,
J. K.
,
Gadikota
,
H. R.
,
Wu
,
J. L.
,
Sutton
,
K.
,
Gill
,
T. J.
, and
Li
,
G.
,
2010
, “
Comparison of Single- and Double-Bundle Anterior Cruciate Ligament Reconstructions in Restoration of Knee Kinematics and Anterior Cruciate Ligament Forces
,”
Am. J. Sports Med.
,
38
(
7
), pp.
1359
1367
.
28.
Yoo
,
J. D.
,
Papannagari
,
R.
,
Park
,
S. E.
,
DeFrate
,
L. E.
,
Gill
,
T. J.
, and
Li
,
G.
,
2005
, “
The Effect of Anterior Cruciate Ligament Reconstruction on Knee Joint Kinematics Under Simulated Muscle Loads
,”
Am. J. Sports Med.
,
33
(
2
), pp.
240
246
.
29.
Li
,
G.
,
Gadikota
,
H.
, and
Gill
,
T.
,
2012
, “
System and Method for Ligament Reconstruction
,” U.S. Patent No.
US2012/0109299
.
30.
Ahmad
,
C. S.
,
Gardner
,
T. R.
,
Groh
,
M.
,
Arnouk
,
J.
, and
Levine
,
W. N.
,
2004
, “
Mechanical Properties of Soft Tissue Femoral Fixation Devices for Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
32
(
3
), pp.
635
640
.
31.
Kousa
,
P.
,
Jarvinen
,
T. L.
,
Vihavainen
,
M.
,
Kannus
,
P.
, and
Jarvinen
,
M.
,
2003
, “
The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction—Part II: Tibial Site
,”
Am. J. Sports Med.
,
31
(
2
), pp.
182
188
.
32.
Kousa
,
P.
,
Jarvinen
,
T. L.
,
Vihavainen
,
M.
,
Kannus
,
P.
, and
Jarvinen
,
M.
,
2003
, “
The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction—Part I: Femoral Site
,”
Am. J. Sports Med.
,
31
(
2
), pp.
174
181
.
33.
Zantop
,
T.
,
Weimann
,
A.
,
Schmidtko
,
R.
,
Herbort
,
M.
,
Raschke
,
M. J.
, and
Petersen
,
W.
,
2006
, “
Graft Laceration and Pullout Strength of Soft-Tissue Anterior Cruciate Ligament Reconstruction: In Vitro Study Comparing Titanium, Poly-d, l-Lactide, and Poly-d, l-Lactide-Tricalcium Phosphate Screws
,”
Arthroscopy
,
22
(
11
), pp.
1204
1210
.
34.
DeFrate
,
L. E.
,
van der Ven
,
A.
,
Gill
,
T. J.
, and
Li
,
G.
,
2004
, “
The Effect of Length on the Structural Properties of an Achilles Tendon Graft as Used in Posterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
32
(
4
), pp.
993
997
.
35.
Li
,
G.
,
DeFrate
,
L.
,
Suggs
,
J.
, and
Gill
,
T.
,
2003
, “
Determination of Optimal Graft Lengths for Posterior Cruciate Ligament Reconstruction–A Theoretical Analysis
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
295
299
.
You do not currently have access to this content.