An adjustable-length intramedullary (IM) nail may reduce both complications secondary to fracture fixation and manufacturing costs. We hypothesized that our novel nail would have suitable mechanical performance. To test this hypothesis, we manufactured three prototypes and evaluated them in quasi-static axial compression and torsion and quasi-static four-point bending. Prototypes were dynamically evaluated in both cyclic axial loading and four-point bending and torsion-to-failure. The prototypes exceeded expectations; they were comparable in both quasi-static axial stiffness (1.41 ± 0.37 N/m in cervine tibiae and 2.30 ± 0.63 in cadaver tibiae) and torsional stiffness (1.05 ± 0.26 N·m/deg in cervine tibiae) to currently used nails. The quasi-static four-point bending stiffness was 80.11 ± 09.360, greater than reported for currently used nails. A length-variance analysis indicates that moderate changes in length do not unacceptably alter bone-implant axial stiffness. After 103,000 cycles of axial loading, the prototype failed at the locking screws, comparable to locking screw failures seen clinically. The prototypes survived 1,000,000 cycles of four-point bend cyclic loading, as indicated by a consistent phase angle throughout cyclic loading. The torsion-to-failure test suggests that the prototype has adequate resistance to applied torques that might occur during the healing process. Together, these results suggest that our novel IM nail performs sufficiently well to merit further development. If brought to market, this adjustable-length IM nail could reduce both patient complications and healthcare costs.

References

References
1.
Busse
,
J. W.
,
Morton
,
E.
,
Lacchetti
,
C.
,
Guyatt
,
G. H.
, and
Bhandari
,
M.
,
2008
, “
Current Management of Tibial Shaft Fractures: A Survey of 450 Canadian Orthopedic Trauma Surgeons
,”
Acta Orthop.
,
79
(
5
), pp.
689
694
.
2.
Koval
,
K. J.
,
Clapper
,
M. F.
,
Brumback
,
R. J.
,
Ellison
,
P. S.
, Jr.
,
Poka
,
A.
,
Bathon
,
G. H.
, and
Burgess
,
A. R.
,
1991
, “
Complications of Reamed Intramedullary Nailing of the Tibia
,”
J. Orthop. Trauma
,
5
(
2
), pp.
184
189
.
3.
Bhat
,
A. K.
,
Rao
,
S. K.
, and
Bhaskaranand
,
K.
,
2006
, “
Mechanical Failure in Intramedullary Interlocking Nails
,”
J. Orthop. Surg.
,
14
(
2
), pp.
138
141
.
4.
Johnson
,
K. D.
,
1987
, “
Management of Malunion and Nonunion of the Tibia
,”
Orthop. Clin. North Am.
,
18
(
1
), pp.
157
171
.
5.
Mounasamy
,
V.
, and
Desai
,
P.
,
2013
, “
Peri-Implant Fracture of the Distal Tibia After Intra-Medullary Nailing of a Tibial Fracture: A Report of Two Cases
,”
Eur. J. Orthop. Surg. Traumatol.
,
23
(Suppl.
2
), pp.
S279
S283
.
6.
Reyes-Cabrera
,
J. M.
,
Gonzalez-Alconada
,
R.
, and
Garcia-Mota
,
M. D.
,
2013
, “
Distal Tibia Peri-Implant Fracture With an Intramedullary Nail: A Case Report
,”
Rev. Esp. Cir. Ortop. Traumatol.
,
57
(
6
), pp.
443
445
.
7.
Throop
,
A. D. W.
,
Clark
,
A. M.
, and
Kuxhaus
,
L.
,
2015
, “
An Adjustable-Length Intramedullary Nail: Development and Mechanical Evaluation in Cervine Tibiae
,”
ASME J. Med. Devices
,
9
(
2
), p.
024503
.
8.
Kuxhaus
,
L.
, and
Clark
,
A. M.
,
2015
, “
Adjustable Length Orthopedic Device
,”
Clarkson University
,
Potsdam, NY
, U.S. Patent No.
US9161790 B2
.https://www.google.com/patents/US9161790
9.
DePuy Synthes
,
2015
, “
Titanium Cannulated Tibial Nails: Expert Nailing System Surgical Technique
,”
DePuy Synthes Companies
, Westchester, PA.http://synthes.vo.llnwd.net/o16/LLNWMB8/US%20Mobile/Synthes%20North%20America/Product%20Support%20Materials/Technique%20Guides/SUTGTibNailEXPERTJ6471F.pdf
10.
Chen
,
S. H.
,
Yu
,
T. C.
,
Chang
,
C. H.
, and
Lu
,
Y. C.
,
2008
, “
Biomechanical Analysis of Retrograde Intramedullary Nail Fixation in Distal Femoral Fractures
,”
Knee
,
15
(
5
), pp.
384
389
.
11.
Throop
,
A. D.
,
Landauer
,
A. K.
,
Clark
,
A. M.
, and
Kuxhaus
,
L.
,
2015
, “
Cervine Tibia Morphology and Mechanical Strength: A Suitable Tibia Model?
,”
ASME J. Biomech. Eng.
,
137
(
3
), p. 034503.
12.
ASTM
,
2014
, “
Standard Specification and Test Methods for Intramedullary Fixation Devices
,” ASTM International, West Conshohocken, PA, Standard No.
F1264 - 14
https://www.astm.org/DATABASE.CART/HISTORICAL/F1264-14.htm.
13.
Gaebler
,
C.
,
Stanzl-Tschegg
,
S.
,
Heinze
,
G.
,
Holper
,
B.
,
Milne
,
T.
,
Berger
,
G.
, and
Vecsei
,
V.
,
1999
, “
Fatigue Strength of Locking Screws and Prototypes Used in Small-Diameter Tibial Nails: A Biomechanical Study
,”
J. Trauma
,
47
(
2
), pp.
379
384
.
14.
Dailey
,
H. L.
,
Daly
,
C. J.
,
Galbraith
,
J. G.
,
Cronin
,
M.
, and
Harty
,
J. A.
,
2013
, “
The Flexible Axial Stimulation (FAST) Intramedullary Nail Provides Interfragmentary Micromotion and Enhanced Torsional Stability
,”
Clin. Biomech.
,
28
(
5
), pp.
579
585
.
15.
Hoenig
,
M.
,
Gao
,
F.
,
Kinder
,
J.
,
Zhang
,
L. Q.
,
Collinge
,
C.
, and
Merk
,
B. R.
,
2010
, “
Extra-Articular Distal Tibia Fractures: A Mechanical Evaluation of 4 Different Treatment Methods
,”
J. Orthop. Trauma
,
24
(
1
), pp.
30
35
.
16.
Klein
,
P.
,
Opitz
,
M.
,
Schell
,
H.
,
Taylor
,
W. R.
,
Heller
,
M. O.
,
Kassi
,
J. P.
,
Kandziora
,
F.
, and
Duda
,
G. N.
,
2004
, “
Comparison of Unreamed Nailing and External Fixation of Tibial Diastases—Mechanical Conditions During Healing and Biological Outcome
,”
J. Orthop. Res.
,
22
(
5
), pp.
1072
1078
.
17.
Schüller
,
M.
,
Herndler
,
S.
,
Weninger
,
P.
,
Jamek
,
M.
,
Redl
,
H.
, and
Tschegg
,
E. K.
,
2008
, “
Stiffness and Permanent Deformation of Extra-Articular Distal Tibia Fractures Treated With Unreamed Small Diameter Intramedullary Nailing
,”
Mater. Sci. Eng. C
,
28
(
8
), pp.
1209
1216
.
18.
Tschegg
,
E. K.
,
Herndler
,
S.
,
Weninger
,
P.
,
Jarnek
,
M.
,
Stanzi-Tschegg
,
S.
, and
Redl
,
H.
,
2008
, “
Stiffness Analysis of Tibia-Implant System Under Cyclic Loading
,”
Mater. Sci. Eng. C
,
28
(
8
), pp.
1203
1208
.
19.
Wahnert
,
D.
,
Stolarczyk
,
Y.
,
Hoffmeier
,
K. L.
,
Raschke
,
M. J.
,
Hofmann
,
G. O.
, and
Muckley
,
T.
,
2012
, “
The Primary Stability of Angle-Stable Versus Conventional Locked Intramedullary Nails
,”
Int. Orthop.
,
36
(
5
), pp.
1059
1064
.
20.
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2000
, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
,
33
(
3
), pp.
279
288
.
21.
Markolf
,
K. L.
,
Schmalzried
,
T. P.
, and
Ferkel
,
R. D.
,
1989
, “
Torsional Strength of the Ankle In Vitro. The Supination-External-Rotation Injury
,”
Clin. Orthop. Relat. Res.
,
246
, pp.
266
272
.
22.
Steinberg
,
E. L.
,
Rath
,
E.
,
Shlaifer
,
A.
,
Chechik
,
O.
,
Maman
,
E.
, and
Salai
,
M.
,
2013
, “
Carbon Fiber Reinforced PEEK Optima: A Composite Material Biomechanical Properties and Wear/Debris Characteristics of CF-PEEK Composites for Orthopedic Trauma Implants
,”
J. Mech. Behav. Biomed. Mater.
,
17
, pp.
221
228
.
23.
Maugans
,
C. J.
, and
Damron
,
T. A.
,
2015
, “
Femoral Fixion Expandable Nail Implant Failure and Difficult Extraction: A Case Report
,”
Tech. Orthop.
,
30
(
1
), pp.
e1
e4
.
24.
Vegt
,
P.
,
Muir
,
J. M.
, and
Block
,
J. E.
,
2014
, “
The Photodynamic Bone Stabilization System: A Minimally Invasive, Percutaneous Intramedullary Polymeric Osteosynthesis for Simple and Complex Long Bone Fractures
,”
Med. Devices
,
7
, pp.
453
461
.
25.
Zehir
,
S.
,
Sahin
,
E.
, and
Zehir
,
R.
,
2015
, “
Comparison of Clinical Outcomes With Three Different Intramedullary Nailing Devices in the Treatment of Unstable Trochanteric Fractures
,”
Ulusal Travma Acil Cerrahi Dergisi
,
21
(
6
), pp.
469
476
.
You do not currently have access to this content.