Three-dimensional (3D) bioprinting offers innovative research vectors for tissue engineering. However, commercially available bioprinting platforms can be cost prohibitive to small research facilities, especially in an academic setting. The goal is to design and fabricate a low-cost printing platform able to deliver cell-laden fluids with spatial accuracy along the X, Y, and Z axes of 0.1 mm. The bioprinter consists of three subassemblies: a base unit, a gantry, and a shuttle component. The platform utilizes four stepper motors to position along three axes and a fifth stepper motor actuating a pump. The shuttle and gantry are each driven along their respective horizontal axes via separate single stepper motor, while two coupled stepper motors are used to control location along the vertical axis. The current shuttle configuration allows for a 5 mL syringe to be extruded within a work envelope of 180 mm × 160 mm × 120 mm (X, Y, Z). The shuttle can easily be reconfigured to accommodate larger volume syringes. An attachment for a laser pen is located such that printing material may be light-activated pre-extrusion. Positional fidelity was established with calipers possessing a resolution to the nearest hundredth millimeter. The motors associated with the X and Y axes were calibrated to approximately 0.02 mm per motor impulse. The Z axis has a theoretical step distance of ∼51 nm, generating 0.04% error over a 10 mm travel distance. The A axis, or pump motor, has an impulse distance of 0.001 mm. The volume extruded by a single impulse is dictated by the diameter of the syringe used. With a 5 mL syringe possessing an inner diameter of 12.35 mm, the pump pushes as little as 0.119 μL. While the Z axis is tuned to the highest resolution settings for the motor driver, the X, Y, and A axes can obtain higher or lower resolution via physical switches on the motor drivers.

References

References
1.
Kim
,
W. R.
,
Smith
,
J. M.
,
Skeans
,
M. A.
,
Schladt
,
D. P.
,
Schnitzer
,
M. A.
,
Edwards
,
E. B.
,
Harper
,
A. M.
,
Wainwright
,
J. L.
,
Snyder
,
J. J.
,
Israni
,
A. K.
, and
Kasiske
,
B. L.
,
2012
, “
OPT/SRTR 2012 Annual Data Report: Liver
,”
Am. J. Transplant.
,
14
(S1), pp. 69–96.
2.
Langer
,
R.
, and
Vacanti
,
J.
,
1993
, “
Tissue Engineering
,”
Science
,
260
(
5110
), pp.
920
926
.
3.
Mironov
,
V.
,
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Forgacs
,
G.
,
Drake
,
C. J.
, and
Markwald
,
R. R.
,
2009
, “
Organ Printing: Tissue Pheroids as Building Blocks
,”
Biomaterials
,
30
(
12
), pp.
2164
2174
.
4.
Kaully
,
T.
,
Kaufman-Francis
,
K.
,
Lesman
,
A.
, and
Levenberg
,
S.
,
2009
, “
Vascularization—The Conduit to Viable Engineered Tissues
,”
Tissue Eng., Part B
,
15
(
2
), pp.
159
169
.
5.
Rauh
,
J.
,
Milan
,
F.
,
Gunther
,
K.-P.
, and
Stiehler
,
M.
,
2011
, “
Bioreactor Systems for Bone Tissue Engineering
,”
Tissue Eng., Part B
,
17
(
4
), pp.
263
280
.
6.
Prima Di
,
M.
,
Coburn
,
J.
,
Hwang
,
D.
,
Kelly
,
J.
,
Khairuzzaman
,
A.
, and
Ricles
,
L.
,
2016
, “
Additively Manufactured Medical Products—The FDA Perspective
,”
3D Print. Med.
,
2
(
1
), pp.
1
6
.
7.
Melchels
,
F.
,
Domingos
,
M.
,
Klein
,
T.
,
Malda
,
J.
,
Bartolo
,
P.
, and
Hutmacher
,
D.
,
2012
, “
Additive Manufacturing of Tissues and Organs
,”
Prog. Polym. Sci.
,
37
(
8
), pp.
1079
1104
.
8.
Carvalho
,
J.
,
Carvalho
,
P.
,
Gomes
,
D.
, and
Goes
,
A.
,
2013
, “
Innovative Strategies for Tissue Engineering
,”
Advances in Biomaterials Science and Biomedical Applications
,
InTech
,
Rijeka, Croatia
, pp.
295
313
.
9.
Henmi
,
C.
,
Nakmura
,
M.
,
Nishiyama
,
Y.
,
Yamaguchi
,
K.
,
Mochizuki
,
S.
,
Takiura
,
K.
, and
Nakagawa
,
H.
,
2008
, “
New Approaches for Tissue Engineering: Three Dimensional Cell Patterning Using Inkjet Technology
,”
Inflammation Regener.
,
28
(
1
), pp.
36
40
.
10.
Wust
,
S.
,
Godla
,
M.
,
Muller
,
R.
, and
Hofmann
,
S.
,
2014
, “
Tunable Hydrogel Composite With Two-Step Processing in Combination With Innovative Hardware Upgrade for Cell-Based Three-Dimensional Bioprinting
,”
Acta Biomater.
,
10
(
2
), pp.
630
640
.
11.
Boland
,
T.
,
Xu
,
T.
,
Damon
,
B.
, and
Cui
,
X.
,
2006
, “
Application of Inkjet Printing to Tissue Engineering
,”
Biotechnol. J.
,
1
(
9
), pp.
910
917
.
12.
Billiet
,
T.
,
Vandenhaute
,
M.
,
Schelfhout
,
J.
,
Vlierberghe
,
S.
, and
Dubruel
,
P.
,
2012
, “
A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering
,”
Biomaterials
,
33
(
26
), pp.
6020
6040
.
13.
Boland
,
T.
,
Mironov
,
V.
,
Gutowska
,
A.
,
Roth
,
E.
, and
Markwald
,
R.
,
2003
, “
Cell and Organ Printing 2: Fusion of Cell Aggregates in Three-Dimensional Gels
,”
Anat. Rec., Part A
,
272
(2), pp.
497
502
.
14.
Cui
,
X.
, and
Boland
,
T.
,
2009
, “
Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology
,”
Biomaterials
,
30
(
31
), pp.
6221
6227
.
15.
Hong
,
S.
,
Song
,
S. J.
,
Lee
,
J.
,
Jang
,
H.
,
Choi
,
J.
,
Park
,
Y.
, and
Sun
,
K.
,
2013
, “
Cellular Behavior in Micropatterned Hydrogels by Bioprinting System Depended on the Cell Types and Cellular Interaction
,”
J. Biosci. Bioeng.
,
116
(
2
), pp.
224
230
.
16.
Wilson
,
C.
, and
Boland
,
T.
,
2003
, “
Cell and Organ Printing 1: Protein and Cell Printers
,”
Anat. Rec., Part A
,
272A
(
2
), pp.
491
496
.
17.
Nakamura
,
M.
,
Kobayashi
,
A.
,
Takagi
,
F.
,
Watanable
,
A.
,
Hiruma
,
Y.
,
Ohuchi
,
K.
,
Iwasaki
,
Y.
,
Horie
,
M.
,
Morita
,
I.
, and
Takatani
,
S.
,
2005
, “
Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells
,”
Tissue Eng.
,
11
(11–12), pp.
1658
1666
.
18.
Guillotin
,
B.
,
Souquet
,
A.
,
Catros
,
S.
,
Duocastella
,
M.
,
Pippenger
,
B.
,
Bellance
,
S.
,
Bareille
,
R.
,
Rémy
,
M.
,
Bordenave
,
L.
,
Amédée
,
J.
, and
Guillemot
,
F.
,
2010
, “
Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Microscale Organization
,”
Biomaterials
,
31
(
28
), pp.
7250
7256
.
19.
Toma
,
C.
,
Pittenger
,
M.
,
Cahill
,
K.
,
Byrne
,
B.
, and
Kessler
,
P.
,
2002
, “
Human Mesenchymal Stem Cells Differentiate to a Cardiomyocyte Phenotype in the Adult Murine Heart
,”
Circulation
,
105
(
1
), pp.
93
98
.
20.
Guillotin
,
B.
, and
Guillemot
,
F.
,
2011
, “
Cell Patterning Technologies for Organotypic Tissue Fabrication
,”
Trends Biotechnol.
,
29
(
4
), pp.
183
190
.
21.
Qureshi
,
A.
,
Monroe
,
W.
,
Dasa
,
V.
,
Gimble
,
J.
, and
Hayes
,
D.
,
2013
, “
miR-148b-Nanoparticle Conjugates for Light Mediated Osteogenesis of Human Adipose Stromal/Stem Cells
,”
Biomaterials
,
34
(
31
), pp.
7799
7810
.
22.
Murphy
,
S.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
23.
Nair
,
K.
,
Gandhi
,
M.
,
Khalil
,
S.
,
Yan
,
K.
, and
Marcolongo
,
M.
,
2009
, “
Characterization of Cell Viabilility During Bioprinting Processes
,”
Biotechnol. J.
,
4
(
8
), pp.
1168
1177
.
24.
Walker
,
P.
,
Jimenez
,
F.
,
Gerber
,
M.
,
Aroom
,
K.
,
Shah
,
S.
,
Harting
,
M.
,
Gill
,
B.
,
Savitz
,
S.
, and
Cox
,
C.
,
2010
, “
Effect of Needle Diameter and Flow Rate on Rat and Human Mesenchymal Stromal Cell Characterization and Viability
,”
Tissue Eng., Part C
,
16
(
5
), pp.
989
997
.
25.
Chang
,
C.
,
Boland
,
E.
,
Williams
,
T.
, and
Hoying
,
J.
,
2011
, “
Direct-Write Bioprinting Three-Dimensional Biohybrid Systems for Future Regenerative Therapies
,”
J. Biomed. Mater. Res., Part B
,
98
(
1
), pp.
160
170
.
26.
Peltola
,
S.
,
Melchels
,
F.
,
Grijpma
,
D.
, and
Kellomaki
,
M.
,
2008
, “
A Review of Rapid Prototyping Techniques for Tissue Engineering Purposes
,”
Ann. Med.
,
40
(
4
), pp.
268
280
.
You do not currently have access to this content.