This paper deals with the survey of kinematic structures adapted to specific medical robots: minimally invasive surgery (MIS) and tele-echography. The large diversity of kinematic architectures that can be found in medical robotics leads us to perform a statistical analysis to inform and guide design of medical robots. Safety constraints and some considerations in design evolution of medical robots are presented in this paper. First, we describe the spectrum of medical robots in minimally invasive surgery and tele-echography applications and particularly the variety of kinematic architectures used. We present the robots and their kinematic architectures and highlight differences that occur in each medical application. We perform a statistical analysis which can serve as a resource in topological synthesis for each specific medical application. Safety is an important specification in medical robotics, and for that reason we show the means used to take into account this constraint. This study demonstrates that the nature of medical robots implies specific requirements leading to different kinematic structures. The statistical analysis gives information on choice of kinematic structures for medical applications (minimally invasive surgery and echography). The safety constraint as well as the interaction between doctor and robot leads to investigate new mechanical solutions to enhance medical robot safety and compliance. We expect that this paper will serve as a significant resource and help the design of future medical robots.

References

References
1.
Nouaille
,
L.
,
Laribi
,
M.
,
Nelson
,
C.
,
Essomba
,
T.
,
Poisson
,
G.
, and
Zeghloul
,
S.
,
2016
, “
Design Process for Robotic Medical Tool Guidance Manipulators
,”
Proc. IMechE Part C
,
230
(
2
), pp.
259
275
.
2.
Sackier
,
J.
, and
Wang
,
Y.
,
1994
, “
Robotically Assisted Laparoscopic Surgery. From Concept to Development
,”
Surg. Endoscopy
,
8
(
1
), pp.
63
66
.
3.
Aiono
,
S.
,
Gilbert
,
J.
,
Soin
,
B.
,
Finlay
,
P.
, and
Gordon
,
A.
,
1999
, “
Controlled Trial of the Introduction of a Robotic Camera Assistant (Endoassist) for Laparoscopic Cholesystectomy
,”
Surg. Endoscopy
, 16(9), pp. 1267–1270.
4.
Berkelman
,
P.
,
Boidard
,
E.
,
Cinquin
,
P.
, and
Troccaz
,
J.
,
2003
, “
LER: The Light Endoscope Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Las Vegas, NV, Oct. 27–31, pp.
2835
2840
.
5.
Zemiti
,
N.
,
Ortmaier
,
T.
,
Vitrani
,
M. A.
, and
Morel
,
G.
,
2004
, “
A Force Controlled Laparoscopic Surgical Robot Without Distal Force Sensing
,”
Nineth International Symposium on Experimental Robotics
(
ISER
), Singapore, June 18–21, pp. 153–164.
6.
Preusche
,
C.
,
Ortmaier
,
T.
, and
Hirzinger
,
G.
,
2002
, “
Teleoperation Concepts in Minimal Invasive Surgery
,”
Control Eng. Pract.
, 10(11), pp. 1245–1250.
7.
Marescaux
,
J.
,
Leroy
,
J.
,
Gagner
,
M.
,
Rubino
,
F.
,
Mutter
,
D.
,
Vix
,
M.
,
Butner
,
S. E.
, and
Smith
,
M. K.
,
2001
, “
Transatlantic Robotic Assisted Remote Tele-Surgery
,”
Nature
,
413
(
6854
), pp.
379
380
.
8.
Sallé
,
D.
,
2004
, “
Conception Optimale d'Instruments Robotisés à Haute Mobilité Pour la Chirurgie Mini-Invasive
,” Ph.D. thesis, University of Paris, Paris, France.
9.
Kang
,
H.
, and
Wen
,
J. T.
,
2001
, “
EndoBot: A Robotic Assistant in Minimally Invasive Surgeries
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
2031
2036
.
10.
Cavusoglu
,
M. C.
,
2000
, “
Telesurgery and Surgical Simulation: Design, Modeling, and Evaluation of Haptic Interfaces to Real and Virtual Surgical Environments
,” Ph.D. thesis, University of California, Berkeley, CA.
11.
Cavusoglu
,
M. C.
,
Williams
,
W.
,
Tendick
,
F.
, and
Sastry
,
S. S.
,
2001
, “
Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications
,”
Ind. Rob. Int. J.
, 30(1), pp. 22–29.
12.
Rininsland
,
H.
,
1999
, “
ARTEMIS. A Telemanipulator for Cardiac Surgery
,”
Eur. J. Cardio-Thorac. Surg.
,
16
(
2
), pp.
S106
S111
.
13.
Van Meer
,
F.
,
2005
, “
Conception et Réalisation d'une Instrumentation Terminale Intégrée en Chirurgie Mini-Invasive Robotisée
,” Ph.D. thesis, University of Montpellier, Montpellier, France.
14.
Kehoe
,
B.
,
Kahn
,
G.
,
Mahler
,
J.
,
Kim
,
J.
,
Lee
,
A.
,
Lee
,
A.
,
Nakagawa
,
K.
,
Patil
,
S.
,
Boyd
,
W. D.
,
Abbeel
,
P.
, and
Goldberg
,
K.
,
2014
, “
Autonomous Multilateral Debridement With the Raven Surgical Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp. 1432–1439.
15.
Hagn
,
U.
,
Konietschke
,
R.
,
Tobergte
,
A.
,
Nickl
,
M.
,
Jörg
,
S.
,
Kuebler
,
B.
,
Passig
,
G.
,
Gröger
,
M.
,
Fröhlich
,
F.
,
Seibold
,
U.
,
Le-Tien
,
L.
,
Albu-Schäffer
,
A.
,
Nothelfer
,
A.
,
Hacker
,
F.
,
Grebenstein
,
M.
, and
Hirzinger
,
G.
,
2010
, “
DLR MiroSurge—A Versatile System for Research in Endoscopic Telesurgery
,”
Int. J. Comput. Assisted Radiol. Surg.
,
5
(
2
), pp.
183
193
.
16.
Feng
,
M.
,
Fu
,
Y.
,
Pan
,
B.
, and
Wang
,
S.
,
2010
, “
Design and Implementation of a Medical Robot for Celiac Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Tianjin, China, Dec. 14–18, pp. 47–52.
17.
Eindhoven University of Technology
, 2010, “
Better Surgery With New Surgical Robot With Force Feedback
,” Eindhoven University of Technology, Eindhoven, The Netherlands, accessed June 27, 2017, https://www.tue.nl/en/university/news-and-press/news/27-09-2010-better-surgery-with-new-surgical-robot-with-force-feedback/
18.
Rossitto
,
C.
,
Gueli Alletti
,
S.
,
Fanfani
,
F.
,
Fagotti
,
A.
,
Costantini
,
B.
,
Gallotta
,
V.
,
Selvaggi
,
L.
,
Monterossi
,
G.
,
Restaino
,
S.
,
Gidaro
,
S.
, and
Scambia
,
G.
,
2016
, “
Learning a New Robotic Surgical Device: Telelap Alf X in Gynaecological Surgery
,”
Int. J. Med. Rob.
,
12
(
3
), pp.
490
495
.
19.
Laribi
,
M. A.
,
Arsicault
,
M.
,
Rivière
,
T.
, and
Zeghloul
,
S.
,
2012
, “
Toward New Minimally Invasive Surgical Robotic System
,”
IEEE International Conference on Industrial Technology
(
ICIT
), Athens, Greece, Mar. 19–21, pp. 504–509.
20.
Laribi
,
M. A.
,
Rivière
,
T.
,
Arsicault
,
M.
, and
Zeghloul
,
S.
,
2012
, “
A Design of Slave Surgical Robot Based on Motion Capture
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Guangzhou, China, Dec. 11–14, pp.
600
605
.
21.
Ortmaier
,
T.
, and
Konietschke
,
R.
,
2006
, “
Image Guided Robotic Surgery—Towards Less Invasive Therapy
,”
Workshop on Robotics Based Medicine of the IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19.
22.
De Cuhna
,
D.
,
Gravez
,
P.
,
Leroy
,
C.
,
Maillard
,
E.
,
Jouan
,
J.
,
Varley
,
P.
,
Jones
,
M.
,
Halliwell
,
M.
,
Hawkes
,
D.
,
Wells
,
P. N. T.
, and
Angelini
,
L.
,
1998
, “
The MIDSTEP System for Ultrasound Guided Remote Tele-Surgery
,”
20th International Conference on IEEE Engineering in Medecine and Biology Society
, Hong Kong, China, Oct. 29–Nov. 1, Vol.
3
, pp.
1266
1269
.
23.
Gourdon
,
A.
,
Poignet
,
P.
,
Poisson
,
G.
,
Vieyres
,
P.
, and
Marche
,
P.
,
1999
, “
A New Robotic Mechanism for Medical Application
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Atlanta, GA, Sept. 19–23, pp.
33
38
.
24.
Salcudean
,
S.
,
Zhu
,
W. H.
,
Abolmaesumi
,
P.
,
Bachmann
,
S.
, and
Lawrence
,
P. D.
,
1999
, “
A Robot System for Medical Ultrasound
,”
9th International Symposium of Robotics Research
(
ISRR
), Snowbird, UT, Oct. 9–12, pp.
152
159
.
25.
Mitsuishi
,
M.
,
Warisawa
,
S.
,
Tsuda
,
T.
,
Higuchi
,
T.
,
Koizumi
,
N.
,
Hashizume
,
H.
, and
Fujiwara
,
K.
,
2001
, “
Remote Ultrasound Diagnostic System
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, Vol.
2
, pp.
1567
1573
.
26.
Courreges
,
F.
,
Smith-Guerin
,
N.
,
Poisson
,
G.
,
Vieyres
,
P.
,
Gourdon
,
A.
,
Szpieg
,
M.
, and
Merigeaux
,
O.
,
2001
, “
Real-Time Exhibition of a Simulated Space Tele-Echography Using an Ultra-Light Robot
,” Sixth International Symposium on Artificial Intelligence and Robotics and Automation in Space (
i-SAIRAS 2001
), Canadian Space Agency, St-Hubert, QC, Canada, June 18–22.
27.
Vilchis
,
A.
,
2003
, “
Télé-Échographie Robotisée
,” Ph.D. thesis, University of Grenoble, Grenoble, France.
28.
Al Bassit
,
L.
,
2005
, “
Structures Mécaniques à Modules Sphériques Optimisées Pour un Robot Médical de Télé-Échographie Mobile
,” Ph.D. thesis, University of Orleans, Orleans, France.
29.
Najafi
,
F.
,
2004
, “
Design and Prototype of a Robotic System for Remote Palpation and Ultrasound Imaging
,”
Ph.D. thesis
, University of Manitoba, Winnipeg, MB, Canada.
30.
Najafi
,
F.
, and
Sepehri
,
N.
,
2008
, “
A Novel Hand Controller for Remote Ultrasound Imaging
,”
Mechatronics
,
18
(
10
), pp.
578
590
.
31.
Nouaille
,
L.
,
Vieyres
,
P.
, and
Poisson
,
G.
,
2012
, “
Process of Optimization for a 4 DOF Tele-Echography Robot
,”
Robotica
,
30
(
7
), pp.
1131
1145
.
32.
Ito
,
K.
,
Sugano
,
S.
, and
Iwata
,
H.
,
2010
, “
Portable and Attachable Tele-Echography Robot System: FASTele
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
487
490
.
33.
Nakadate
,
R.
,
Matsunaga
,
Y.
,
Solis
,
J.
,
Takanishi
,
A.
,
Minagawa
,
E.
,
Sugawara
,
M.
, and
Niki
,
K.
,
2011
, “
Development of a Robot Assisted Carotid Blood Flow Measurement System
,”
Mech. Mach. Theory
,
46
(
8
), pp.
1066
1083
.
34.
Arbeille
,
P.
,
Poisson
,
G.
,
Vieyres
,
P.
,
Ayoub
,
J.
,
Porchet
,
M.
, and
Boulay
,
J.
,
2003
, “
Echographic Examination in Isolated Sites Controlled From an Expert Centre Using a 2D Echograph Guided by a Robotic Arm
,”
Ultrasound Med. Biol.
,
29
(
7
), pp.
993
1000
.
35.
Arbeille
,
P.
,
Capri
,
A.
,
Ayoub
,
J.
,
Kieffer
,
V.
,
Georgescu
,
M.
, and
Poisson
,
G.
,
2007
, “
Use of a Robotic Arm to Tele Operated Abdominal Ultrasound
,”
Am. J. Roentgenol.
,
188
(4), pp.
317
322
.
36.
Kuo
,
C.
,
Dai
,
J.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.
37.
Rosen
,
J.
,
Brown
,
J. D.
,
Barreca
,
M.
,
Chang
,
L.
,
Hannaford
,
B.
, and
Sinanan
,
M.
,
2002
, “
The Blue DRAGON—A System for Monitoring the Kinematics and the Dynamics of Endoscopic Tools in Minimally Invasive Surgery for Objective Laparoscopic Skill Assessment
,”
Stud. Health Technol. Inform.
,
85
, pp.
412
418
.
38.
Nouaille
,
L.
,
Poisson
,
G.
,
Zhang
,
X.
, and
Nelson
,
C. A.
,
2013
, “
Method of Dimensional Optimization of Spherical Robots for Medical Applications Using Specialized Indices
,”
Adv. Rob.
,
28
(
3
), pp.
173
186
.
39.
Dario
,
P.
,
Guglielmelli
,
E.
,
Allotta
,
B.
, and
Carrozza
,
M.
,
1996
, “
Robotics for Medical Applications
,”
IEEE Rob. Autom. Mag.
,
3
(
3
), pp.
44
56
.
40.
Casals
,
A.
,
1998
, “
Robots in Surgery
,”
Autonomous Robotic Systems
, Vol. 236,
A. T.
de Almeida
and
O.
Khatib
, eds.,
Springer Verlag
, Berlin, pp.
222
234
.
41.
J. Troccaz, 2012, Robotique médicale, Lavoisier, Paris, France.
42.
Davies
,
B.
,
2002
, “
Robotic Surgery: Is a ‘Hands-On’ Approach the Way Forward?
,”
Surgetica, Computer-Aided Medical Interventions: Tools and Applications
, Sauramps Medical, Montpellier, France, pp.
57
62
.
43.
Hoeckelmann
,
M.
,
Rudas
,
I. J.
,
Fiorini
,
P.
,
Kirchner
,
F.
, and
Haidegger
,
T.
, 2015, “
Current Capabilities and Development Potential in Surgical Robotics
,”
Int. J. Adv. Rob. Syst.
,
12
(
5
), pp.
1
39
.
44.
Avgousti
,
S.
,
Christoforou
,
E. G.
,
Panayides
,
A. S.
,
Voskarides
,
S.
,
Novales
,
C.
,
Nouaille
,
L.
,
Pattichis
,
C. S.
, and
Vieyres
,
P.
,
2016
, “
Medical Telerobotic Systems: Current Status and Future Trends
,”
Biomed. Eng. Online
,
15
(
1
), p.
96
.
45.
Smith-Guérin
,
N.
,
Nouaille
,
L.
,
Vieyres
,
P.
, and
Poisson
,
G.
,
2008
, “
A Medical Robot Kinematic Design Approach Based on Knowledge Management
,”
Ind. Rob.: Int. J.
,
35
(
4
), pp.
316
323
.
46.
SurgRob
,
2012
, “
The Indian MAXIO System
,” SurgRob, accessed June 27, 2017, http://surgrob.blogspot.fr/2012/08/the-indian-maxio-system.html
47.
SurgRob
,
2014
, “
iSYS 1 Robot is Now FDA Cleared
,” SurgRob, accessed June 27, 2017, http://surgrob.blogspot.fr/2014/03/isys-1-robot-is-now-fda-cleared.html
48.
Shoham
,
M.
,
Burman
,
M.
,
Zehavi
,
E.
,
Joskowicz
,
L.
,
Batkilin
,
E.
, and
Kunicher
,
Y.
,
2003
, “
Bone-Mounted Miniature Robot for Surgical Procedures: Concept and Clinical Applications
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
893
901
.
49.
Laribi
,
M.
,
Essomba
,
T.
,
Zeghloul
,
S.
, and
Poisson
,
G.
,
2011
, “
Optimal Synthesis of a New Spherical Parallel Mechanism for Application to Tele-Echography Chain
,”
ASME
Paper No. DETC2011-47184.
50.
Michelin
,
M.
,
2004
, “
Contribution à la Commande de Robots Pour la Chirurgie Mini-Invasive
,” Ph.D. thesis, University of Montpellier, Montpellier, France.
51.
Duchemin
,
G.
,
Poignet
,
P.
,
Dombre
,
E.
, and
Pierrot
,
F.
,
2004
, “
The Challenge of Designing and Manufacturing Actuated Medical Robots for Safe Human Interaction
,”
IEEE Rob. Autom. Mag.
,
11
(
2
), pp.
46
55
.
52.
Davies
,
B.
,
1993
, “
Safety of Medical Robots
,”
Sixth International Conference on Advanced Robotics (ICAR)
, Tokyo, Japan, Nov. 1–2, pp.
311
317
.
53.
Troccaz
,
J.
,
2012
,
Medical Robotics
,
Wiley
, Hoboken, NJ.
54.
Guiochet
,
J.
, and
Vilchis
,
A.
,
2002
, “
Safety Analysis of a Medical Robot for Tele-Echography
,”
Second IARP IEEE/RAS Joint Workshop on Technical Challenge for Dependable Robots in Human Environments
, Toulouse, France, Oct. 7–8, pp.
217
227
.
55.
Pierrot
,
F.
,
Dombre
,
E.
,
Dégoulange
,
E.
,
Urbain
,
L.
,
Caron
,
P.
,
Boudet
,
S.
,
Gariépy
,
J.
, and
Mégnien
,
J.
,
1999
, “
Hippocrate: A Safe Robot Arm for Medical Applications With Force Feedback
,”
Med. Image Anal.
,
3
(
3
), pp.
285
300
.
56.
Nagel
,
M.
,
Schmidt
,
G.
,
Schnuetgen
,
G.
, and
Kalender
,
W. A.
,
2004
, “
Risk Management for a Robot-Assisted Needle Positioning System for Interventional Radiology
,”
Computer Aided Radiology and Surgery Conference
(
CARS
), Chicago, IL, June 23–26, pp.
549
554
.
57.
Engel
,
D.
,
Raczkowsky
,
J.
, and
Worn
,
H.
,
2001
, “
A Safe Robot System for Craniofacial Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
2020
2024
.
58.
Laible
,
U.
,
Burger
,
T.
, and
Pritschow
,
G.
,
2004
, “
A Fail-Safe Dual Channel Robot Control for Surgery Applications
,”
Saf. Sci.
,
42
(
5
), pp.
423
436
.
59.
Korb
,
W.
,
Kornfeld
,
M.
,
Birkfellner
,
W.
,
Boesecke
,
R.
,
Figl
,
M.
,
Fuerst
,
M.
,
Kettenbach
,
J.
,
Vogler
,
A.
,
Hassfeld
,
S.
, and
Kornreif
,
G.
,
2005
, “
Risk Analysis and Safety Assessment in Surgical Robotics: A Case Study on Biopsy Robot
,”
Minimally Invasive Ther.
,
14
(
1
), pp.
23
31
.
60.
Lens
,
T.
,
2012
, “
Physical Human-Robot Interaction With a Lightweight, Elastic Tendon Driven Robotic Arm: Modeling, Control, and Safety Analysis
,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
61.
SAFROS
, 2013, “
The SAFROS Project: Results
,” University of Verona, Verona, Italy, accessed June 27, 2017, http://www.safros.eu/safros/results/
62.
Albu-Schäffer
,
A.
,
Haddadin
,
S.
,
Ott
,
C.
,
Stemmer
,
A.
,
Wimböck
,
T.
, and
Hirzinger
,
G.
,
2007
, “
The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments
,”
Ind. Rob.
,
34
(
5
), pp.
376
385
.
63.
SurgRob
,
2011
, “
The New ALF-X Robot
,” SurgRob, accessed June 27, 2017, http://surgrob.blogspot.fr/2011/07/new-alf-x-robot.html
64.
Dario
,
P.
,
Laschi
,
C.
, and
Guglielmelli
,
E.
,
2001
, “
Dependability in Biomedical Robotics: Critical Issues and Main Challenges
,”
First IARP/IEEE-RAS Joint Workshop on Technical Challenge of Dependable Robots in Human Environments
, Seoul, South Korea, May 21–22, Paper No. VI-2.
65.
Saafi
,
H.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2015
, “
Forward Kinematic Model Improvement of a Spherical Parallel Manipulator Using Extra Sensor
,”
Mech. Mach. Theory
,
91
, pp.
102
119
.
66.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots
, Vol.
1
, Pittsburgh, PA, Aug. 5–9, pp.
399
406
.
67.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
,
2005
, “
Biologically Inspired Joint Stiffness Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4508
4513
.
68.
Van Ham
,
R.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs. Review of Actuators With Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.
69.
Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D. G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L. C., and Wolf, S., 2013, “Variable Impedance Actuators: A Review,”
Rob. Auton. Sys.
,
61
(12), pp. 1601–1614.
70.
Rouse
,
E. J.
,
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2014
, “
Clutchable Series-Elastic Actuator: Implications for Prosthetic Knee Design
,”
Int. J. Rob. Res.
,
33
(
13
), pp.
1611
1625
.
71.
Park
,
J.-J.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2008
, “
Safe Joint Mechanism Based on Passive Compliance for Collision Safety
,”
Recent Progress in Robotics: Viable Robotic Service to Human
, Vol.
370
,
Springer
,
Berlin
, pp.
49
61
.
72.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2010
, “
3-DOF Cartesian Force Limiting Device Based on the Delta Architecture for Safe Physical Human-Robot Interaction
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
3420
3425
.
73.
ANR, 2014, “
Safety Intelligent Sensor for Cobots
,” French National Research Agency, Poitiers, France, accessed June 27, 2017, http://anr-siscob.prd.fr/
74.
Ayoubi
,
Y.
,
Laribi
,
M. A.
,
Courrèges
,
F.
,
Zeghloul
,
S.
, and
Arsicault
,
M.
,
2016
, “
A Complete Methodology to Design a Safety Mechanism for Prismatic Joint Implementation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Daejeon, South Korea, Oct. 9–14, pp. 304–309.
75.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
528
533
.
76.
Petit
,
F.
,
Chalon
,
M.
,
Friedl
,
W.
,
Grebenstein
,
W.
,
Albu-Schaffer
,
A.
, and
Hirzinger
,
G.
,
2010
, “
Bidirectional Antagonistic Variable Stiffness Actuation: Analysis, Design & Implementation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–8, pp. 4189–4196.
77.
Wolf
,
S.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2011
, “
The DLR FSJ: Energy Based Design of a Variable Stiffness Joint
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
5082
5089
.
78.
Eiberger
,
O.
,
Haddadin
,
S.
,
Weis
,
M.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
, “
On Joint Design With Intrinsic Variable Compliance: Derivation of the DLR QA-Joint
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp. 1687–1694.
79.
Van Ham
,
T.
,
Vanderborght
,
B.
,
Van Damme
,
M.
,
Verrelst
,
B.
, and
Lefeber
,
D.
,
2007
, “
MACCEPA, the Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator: Design and Implementation in a Biped Robot
,”
Rob. Auton. Syst.
,
55
(
10
), pp.
761
768
.
80.
Park
,
J.-J.
,
Kim
,
H.-S.
, and
Song
,
J.-B.
,
2009
, “
Safe Robot Arm With Safe Joint Mechanism Using Nonlinear Spring System for Collision Safety
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp. 3371–3376.
81.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2015
, “
A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS)
,”
IEEE/ASME Trans. Mech.
,
18
(
1
), pp.
355
365
.
82.
Jafari
,
A.
,
Tsagarakis
,
N.
,
G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2014
, “
A New Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism
,”
IEEE/ASME Trans. Mech.
,
19
(
1
), pp.
55
63
.
83.
Quy
,
H. V.
,
Aryananda
,
L.
,
Sheikh
,
F. I.
,
Casanova
,
F.
, and
Pfeifer
,
R.
,
2011
, “
A Novel Mechanism for Varying Stiffness Via Changing Transmission Angle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp. 5076–5081.
You do not currently have access to this content.